Advances in Organic Conductors and Superconductors
References
- Wosnitza, J. Spatially Nonuniform Superconductivity in Quasi-Two-Dimensional Organic Charge-Transfer Salts. Crystals 2018, 8, 183. [Google Scholar] [CrossRef]
- Agosta, C.C. Inhomogeneous Superconductivity in Organic and Related Superconductors. Crystals 2018, 8. [Google Scholar] [CrossRef]
- Otsuka, A.; Konarev, D.; Lyubovskaya, R.; Khasanov, S.; Maesato, M.; Yoshida, Y.; Saito, G. Design of Spin-Frustrated Monomer-Type Mott Insulator. Crystals 2018, 8, 115. [Google Scholar] [CrossRef]
- Ueda, K.; Tsumuraya, T.; Kato, R. Temperature Dependence of Crystal Structures and Band Parameters in Quantum Spin Liquid β′-EtMe3Sb[Pd(dmit)2]2 and Related Materials. Crystals 2018, 8, 138. [Google Scholar] [CrossRef]
- Foury-Leylekian, P.; Ilakovac, V.; Balédent, V.; Fertey, P.; Arakcheeva, A.; Milat, O.; Petermann, D.; Guillier, G.; Miyagawa, K.; Kanoda, K.; et al. (BEDT-TTF)2Cu2(CN)3 Spin Liquid: Beyond the Average Structure. Crystals 2018, 8, 158. [Google Scholar] [CrossRef]
- Manna, R.; Hartmann, S.; Gati, E.; Schlueter, J.; de Souza, M.; Lang, M. Low-Temperature Lattice Effects in the Spin-Liquid Candidate κ-(BEDT-TTF)2Cu2(CN)3. Crystals 2018, 8, 87. [Google Scholar] [CrossRef]
- Pinterić, M.; Rivas Góngora, D.; Rapljenović, V.; Ivek, T.; Čulo, M.; Korin-Hamzić, B.; Milat, O.; Gumhalter, B.; Lazić, P.; Sanz Alonso, M.; et al. Electrodynamics in Organic Dimer Insulators Close to Mott Critical Point. Crystals 2018, 8, 190. [Google Scholar] [CrossRef]
- Müller, J.; Thomas, T. Low-Frequency Dynamics of Strongly Correlated Electrons in (BEDT-TTF)2X Studied by Fluctuation Spectroscopy. Crystals 2018, 8, 166. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Imajo, S.; Matsumura, Y.; Yamashita, S.; Akutsu, H. Thermodynamic Picture of Dimer-Mott Organic Superconductors Revealed by Heat Capacity Measurements with External and Chemical Pressure Control. Crystals 2018, 8, 143. [Google Scholar] [CrossRef]
- Gati, E.; Tutsch, U.; Naji, A.; Garst, M.; Köhler, S.; Schubert, H.; Sasaki, T.; Lang, M. Effects of Disorder on the Pressure-Induced Mott Transition in κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Crystals 2018, 8, 38. [Google Scholar] [CrossRef]
- Hassan, N.; Cunningham, S.; Zhilyaeva, E.; Torunova, S.; Lyubovskaya, R.; Schlueter, J.; Drichko, N. Raman Scattering as a Probe of the Magnetic State of BEDT-TTF Based Mott Insulators. Crystals 2018, 8, 233. [Google Scholar] [CrossRef]
- Silva, R.; Santos, I.; Rabaça, S.; Lopes, E.; Gama, V.; Almeida, M.; Belo, D. Synthesis and Characterization of Charge Transfer Salts Based on [M(dcdmp)2] (M = Au, Cu and Ni) with TTF Type Donors. Crystals 2018, 8, 141. [Google Scholar] [CrossRef]
- Prokhorova, T.; Yagubskii, E.; Zorina, L.; Simonov, S.; Zverev, V.; Shibaeva, R.; Buravov, L. Specific Structural Disorder in an Anion Layer and Its Influence on Conducting Properties of New Crystals of the (BEDT-TTF)4A+[M3+(ox)3]G Family, Where G Is 2-Halopyridine; M Is Cr, Ga; A+ Is [K0.8(H3O)0.2]+. Crystals 2018, 8, 92. [Google Scholar] [CrossRef]
- Rabaça, S.; Oliveira, S.; Gama, V.; Santos, I.; Oliveira, G.; Lopes, E.; Canadell, E.; Almeida, M. β′′-(CNB-EDT-TTF)4BF4; Anion Disorder Effects in Bilayer Molecular Metals. Crystals 2018, 8, 142. [Google Scholar] [CrossRef]
- Ohki, D.; Matsuno, G.; Omori, Y.; Kobayashi, A. Optical Conductivity in a Two-Dimensional Extended Hubbard Model for an Organic Dirac Electron System α-(BEDT-TTF)2I3. Crystals 2018, 8, 137. [Google Scholar] [CrossRef]
- Tajima, N. Effects of Carrier Doping on the Transport in the Dirac Electron System α-(BEDT-TTF)2I3 under High Pressure. Crystals 2018, 8, 126. [Google Scholar] [CrossRef]
- Peterseim, T.; Dressel, M. Light-Induced Current Oscillations in the Charge-Ordered State of (TMTTF)2SbF6. Crystals 2017, 7, 278. [Google Scholar] [CrossRef]
- Rösslhuber, R.; Rose, E.; Ivek, T.; Pustogow, A.; Breier, T.; Geiger, M.; Schrem, K.; Untereiner, G.; Dressel, M. Structural and Electronic Properties of (TMTTF)2X Salts with Tetrahedral Anions. Crystals 2018, 8, 121. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dressel, M. Advances in Organic Conductors and Superconductors. Crystals 2018, 8, 332. https://doi.org/10.3390/cryst8090332
Dressel M. Advances in Organic Conductors and Superconductors. Crystals. 2018; 8(9):332. https://doi.org/10.3390/cryst8090332
Chicago/Turabian StyleDressel, Martin. 2018. "Advances in Organic Conductors and Superconductors" Crystals 8, no. 9: 332. https://doi.org/10.3390/cryst8090332
APA StyleDressel, M. (2018). Advances in Organic Conductors and Superconductors. Crystals, 8(9), 332. https://doi.org/10.3390/cryst8090332