Crystal Structure of the Disordered Non-Centrosymmetric Compound Fe0.43Mo2.56SbO9.5
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Crystal Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, S.; Johnsson, M.; Lemmens, P.; Schmid, D.; Menzel, D.; Tapp, J.; Möller, A. Acentric Pseudo-Kagome Structures: The Solid Solution (Co1−xNix)3Sb4O6F6. Chem. Mater. 2014, 26, 3631–3636. [Google Scholar] [CrossRef]
- Yu, H.; Young, J.; Wu, H.; Zhang, W.; Rondinelli, J.M.; Halasyamani, P.S. M4Mg4(P2O7)3 (M = K, Rb): Structural Engineering of Pyrophosphates for Nonlinear Optical Applications. Chem. Mater. 2017, 29, 1845–1855. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.; Halasyamani, P.S. Large Birefringent Materials, Na6Te4W6O29 and Na2TeW2O9: Synthesis, Structure, Crystal Growth, and Characterization. Cryst. Growth Des. 2016, 16, 1081–1087. [Google Scholar] [CrossRef]
- Zhang, W.; Halasyamani, P.S. Top-seeded solution crystal growth of noncentrosymmetric and polar Zn2TeMoO7 (ZTM). J. Solid State Chem. 2016, 236, 32–38. [Google Scholar] [CrossRef]
- Rodriguez, E.E.; Cao, H.; Haiges, R.; Melot, B.C. Single crystal magnetic structure and susceptibility of CoSe2O. J. Solid State Chem. 2016, 236, 39–44. [Google Scholar] [CrossRef]
- Nguyen, S.D.; Halesyamani, P.S. Synthesis, Structure, and Characterization of New Li+—d0—Lone-Pair—Oxides: Noncentrosymmetric Polar Li6(Mo2O5)3(SeO3)6 and Centrosymmetric Li2(MO3)(TeO3) (M = Mo6+ or W6+). Inorg. Chem. 2012, 51, 9529–9538. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.I.; Zhang, W.; Halasyamani, P.S.; Johnsson, M. Zn3Sb4O6F6: Hydrothermal synthesis, crystal structure and nonlinear optical properties. J. Solid State Chem. 2017, 256, 158–161. [Google Scholar] [CrossRef]
- Becker, R.; Johnsson, M.; Kremer, R.K.; Klauss, H.H.; Lemmens, P. Crystal Structure and Magnetic Properties of FeTe2O5X (X = Cl, Br). J. Am. Chem. Soc. 2006, 128, 15469–15475. [Google Scholar] [CrossRef]
- Fawcett, J.; Holloway, J.H.; Russell, D.R. Transition—Metal Tetrafluoride Oxide-Antimony Pentafluoride Adducts; Preparation and Characterization of the Adducts MF40.SbF5 (M = Mo, W, or Re) and Crystal Structures of MoF4O·SbF5 and ReF4O·SbF5. J. Chem. Soc. Dalton Trans. 1980, 5, 1212–1218. [Google Scholar]
- Cochrane, A.K.; Telfer, M.; Dixon, C.L.A.; Zhang, W.; Halasyamani, P.S.; Bousquet, E.; Lightfoot, P. NdBaScO4: Aristotype of a new family of geometric ferroelectrics? Chem. Commun. 2016, 52, 10980–10983. [Google Scholar] [CrossRef]
- De Laune, B.P.; Greaves, C. Structural and magnetic characterisation of CoSb2O4, and the substitution of Pb2+ for Sb3+. J. Solid State Chem. 2012, 187, 225–230. [Google Scholar] [CrossRef]
- Zhou, H.D.; Wiebe, C.R.; Janik, J.A.; Vogt, B.; Harter, A.; Dalal, N.S.; Gardner, J.S. Spin glass transitions in the absence of chemical disorder fort hepyrochlores A2Sb2O7 (A = Mn, Co, Ni). Solid State Chem. 2010, 183, 890–894. [Google Scholar] [CrossRef]
- Politaev, V.V.; Nalbandyan, V.B.; Petrenko, A.A.; Shukaev, I.L.; Volotchaev, V.A.; Medvedev, B.S. Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg). J. Solid State Chem. 2010, 183, 684–691. [Google Scholar] [CrossRef]
- Chater, R.; Gavarri, J.R. Structures isomorphes MeX2O4- Evolution structurale entre 2 K et 300 K de I’antimonite FeSb204: Elasticit et ordremagnktique Anisotropies. J. Solid State Chem. 1985, 60, 78–86. [Google Scholar] [CrossRef]
- Shanmugavani, A.; Lalitha, M.; Yuvaraj, S.; Vasylechko, L.; Meyrick, D.; Senthilkumar, L.; Selvan, R.K. Facile Hydrothermal Synthesis and First Principle Computational Studies of NiSb2O4 and Its Electrochemical Properties with Ni3(Fe(CN)6)2(H2O) for Hybrid Supercapacitors. ChemistrySelect 2017, 2, 6823. [Google Scholar] [CrossRef]
- Gavarri, J.R.; Hewat, A.W. Les antimonites antiferromagnetiques MnSb2O4 et NiSb2O4. J. Solid State Chem. 1983, 49, 14–19. [Google Scholar] [CrossRef]
- Donaldson, D.J.; Kjekshus, A.; Nicholsonm, D.G.; Rakke, T. Properties of Sb-compounds with Rutile-like structures. Acta Chem. Scand. 1975, 29, 803–809. [Google Scholar] [CrossRef]
- Reimers, J.N.; Greedan, J.E.; Stager, C.V.; Kremer, R. Crystal Structure and Magnetism in CoSb2O6 and CoTa2O6. J. Solid State Chem. 1989, 83, 20–30. [Google Scholar] [CrossRef]
- Antic, B.; Rodic, D.; Tellgren, R.; Rundlof, H. Neutron diffraction study of the magnetic and structure properties of Co2.50Sb0.50O4 spinel. J. Magn. Magn. Mater. 2000, 219, 41–44. [Google Scholar] [CrossRef]
- Ali, S.I.; Kremer, R.K.; Johnsson, M. Hydrothermal Synthesis and Magnetic Characterization of the Quaternary Oxide CoMo2Sb2O10. Inorg. Chem. 2016, 55, 11490–11496. [Google Scholar] [CrossRef]
- Primo-Martin, V.; Jansen, M. Synthesis, Structure, and Physical Properties of Cobalt Perovskites: Sr3CoSb2O9 and Sr2CoSbO6−δ. J. Solid State Chem. 2001, 157, 76–85. [Google Scholar] [CrossRef]
- Istomin, S.Y.; Koutcenko, V.A.; Antipov, E.V.; Lindberg, F.; Svensson, G. Synthesis and characterization of novel 6-H perovskites Ba2Co2−xSbxO6−y, 0.6 ≤ x ≤ 0.8 and x = 1.33 (Ba3CoSb2O9). Mater. Res. Bull. 2004, 39, 1013–1022. [Google Scholar] [CrossRef]
- Whitaker, M.J.; Bayliss, R.D.; Berry, F.J.; Greaves, C. The synthesis, structure, magnetic and electrical properties of FeSb2−xPbxO4. J. Mater. Chem. 2011, 21, 14523. [Google Scholar] [CrossRef]
- Brookes, C.; Bowker, M.; Wells, P.P. Catalysts for the Selective Oxidation of Methanol. Catalysts 2016, 6, 92. [Google Scholar] [CrossRef]
- Brookes, C.; Wells, P.P.; Dimitratos, N.; Jones, W.; Gibson, E.K.; Morgan, D.J.; Cibin, G.; Nicklin, C.; Mora-Fonz, D.; Scanlon, D.O.; et al. The Nature of the Molybdenum Surface in Iron Molybdate. The Active Phase in Selective Methanol Oxidation. J. Phys. Chem. C 2014, 118, 26155–26161. [Google Scholar] [CrossRef]
- Oxford Diffraction. CrysAlis CCD and CrysAlis RED; Oxford Diffraction Ltd.: Abingdon, Oxfordshire, UK, 2008. [Google Scholar]
- Sheldrick, G.M. SADABS, Version 2008/1; Bruker AXS Inc.: Billerica, MA, USA, 2008. [Google Scholar]
- Palatinus, L.; Chapuis, G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 785–790. [Google Scholar] [CrossRef]
- Petricek, V.; Dusek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Svensson, C. Refinement of the Crystal Structure of Cubic Antimony Trioxide, Sb2O3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1975, 31, 2016–2018. [Google Scholar] [CrossRef]
- Ali, S.I.; Johnsson, M. Antimony oxofluorides—A synthesis concept that yields phase pure samples and single crystals. Dalton Trans. 2016, 45, 12167–12173. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.D. Chemical Bond in Inorganic Chemistry; Oxford University Press: NewYork, NY, USA, 2002. [Google Scholar]
Fe0.43Mo2.56SbO9.5 | |
---|---|
formula weight/g mol−1 | 543.77 |
temperature/K | 293 |
crystal system | Monoclinic |
space group | Pc (no. 7) |
a/Å | 4.0003 (2) |
b/Å | 7.3355 (3) |
C/Å | 12.6985 (6) |
β/° | 90.0 |
V/Å3 | 372.6 |
ρ/g.cm−3 | 4.846 |
Z | 2 |
crystal size/mm3 | 0.45 × 0.15 × 0.10 |
radiation type | Mo- Kα |
wavelength/Å | 0.71069 |
indices range | −8 ≤ h ≤ 8 −15 ≤ k ≤ 15 −26 ≤ l ≤ 26 |
No. of reflections | |
Measured/unique | 18,904/13,739 |
observed [I >3 ϭ(I)] | 9883 |
Rint | 0.044 |
(sinθ/λ)max/Å−1 | 1.03 |
RF/wRF [F>3ϭ(F)] > | |
All reflections (%) | 6.30/7.29 |
goodness of fit (all) | 1.59 |
Atom | Occ |
---|---|
Mo1 | 0.72 |
Fe1 | 0.12 |
Mo1a | 0.13 |
Fe1a | 0.02 |
Mo2 Fe2 | 0.64 0.11 |
Mo2a | 0.21 |
Fe2a | 0.04 |
Mo3 | 0.86 |
Fe3 | 0.14 |
Atoms | Atom–Oxygen (O) Distances |
---|---|
Sb1 | 1 × 2.146 (11); 1 × 2.063 (7); 1 × 2.09 (2); 1 × 1.95 (2); 1 × 2.443 (7) |
Mo1/Fe1 | 1 × 2.326 (6); 1 × 1.680 (6); 1 × 1.904 (8); 1 × 1.927 (6); 1 × 2.010 (7); 1 × 1.942 (9) |
Mo1a/Fe1a | 1 × 1.620 (7); 1 × 2.391 (7); 1 × 1.946 (11); 1 × 1.912 (9); 1 × 2.014 (11); 1 × 1.941 (11) |
Mo2/Fe2 | 1 × 1.720 (6); 1 × 2.286 (6); 1 × 1.930 (8); 1 × 1.859 (6); 1 × 2.012 (7); 1 × 2.020 (8) |
Mo2a/Fe2a | 1 × 2.329 (6); 1 × 1.675 (6); 1 × 1.868 (9); 1 × 1.809 (7); 1 × 2.031 (8); 1 × 2.066 (9) |
Mo3/Fe3 | 1 × 1.739 (5); 1 × 2.273 (5); 1 × 1.838 (7); 1 × 2.037 (7); 1 × 1.874 (9); 1 × 2.023 (8) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.I.; Lidin, S.; Johnsson, M. Crystal Structure of the Disordered Non-Centrosymmetric Compound Fe0.43Mo2.56SbO9.5. Crystals 2019, 9, 40. https://doi.org/10.3390/cryst9010040
Ali SI, Lidin S, Johnsson M. Crystal Structure of the Disordered Non-Centrosymmetric Compound Fe0.43Mo2.56SbO9.5. Crystals. 2019; 9(1):40. https://doi.org/10.3390/cryst9010040
Chicago/Turabian StyleAli, Sk Imran, Sven Lidin, and Mats Johnsson. 2019. "Crystal Structure of the Disordered Non-Centrosymmetric Compound Fe0.43Mo2.56SbO9.5" Crystals 9, no. 1: 40. https://doi.org/10.3390/cryst9010040
APA StyleAli, S. I., Lidin, S., & Johnsson, M. (2019). Crystal Structure of the Disordered Non-Centrosymmetric Compound Fe0.43Mo2.56SbO9.5. Crystals, 9(1), 40. https://doi.org/10.3390/cryst9010040