Enhancement of Intracavity-Pumped Terahertz Parametric Oscillator Power by Adopting Diode-Side Pumped Configuration Based on KTiOPO4 Crystal
Abstract
:1. Introduction
2. Experimental Set-Up
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shoji, I.; Kondo, T.; Shirane, A.M.; Ito, R. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. 1997, 14, 2268–2294. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Wagner, F.R.; Akhouayri, H.; Natoli, J.Y.; Commandre, M.; Théodore, F.; Albrecht, H. Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4. Appl. Opt. 2009, 48, 4263–4269. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, T.A.; Hoffman, H.J.; Stone, R.E.; Perkins, P.E. Efficient second-harmonic generation in KTP crystals. J. Opt. Soc. Am. B 1986, 3, 683–686. [Google Scholar] [CrossRef]
- Brown, A.J.; Bowers, M.S.; Kangas, K.W.; Fisher, C.H. High-energy, high-efficiency second-harmonic generation of 1064-nm radiation in KTP. Opt. Lett. 1992, 17, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Stolzenberger, R.A.; Hsu, C.C.; Peyghambarian, N.; Reid, J.J.; Morgan, R.A. Type II sum frequency generation in flux and hydrothermally grown KTP at 1.319 and 1.338 μm. IEEE Photon. Technol. Lett. 1989, 1, 446–448. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chen, Y.S.; Tsai, S.W. Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP. Appl. Phys. B 2004, 79, 207–210. [Google Scholar] [CrossRef]
- Kato, K. Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm. IEEE J. Quantum Electron. 1991, 27, 1137–1140. [Google Scholar] [CrossRef]
- Lin, J.T.; Montgomery, J.L. Generation of tunable mid-IR (1.8–2.4 μm) laser from optical parametric oscillation in KTP. Opt. Commun. 1990, 75, 315–320. [Google Scholar] [CrossRef]
- Su, F.F.; Zhang, X.Y.; Wang, W.T.; Cong, Z.H.; Shi, M.; Yang, X.Q.; Kong, W.J.; Ma, L.L.; Wu, W.D. High-efficient diode-pumped actively Q-switched Nd: YAG/KTP Raman laser at 1096 nm wavelength. Opt. Commun. 2013, 305, 201–203. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chang, C.C.; Sung, C.L.; Chen, Y.F. Intracavity continuous-wave multiple stimulated-Raman-scattering emissions in a KTP crystal pumped by a Nd:YVO4 laser. Opt. Express 2015, 23, 22765–22770. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.T.; Cong, Z.H.; Chen, X.H.; Zhang, X.Y.; Qin, Z.G.; Tang, G.Q.; Li, N.; Wang, C.; Lu, Q.M. Terahertz parametric oscillator based on KTiOPO4 crystal. Opt. Lett. 2014, 39, 3706–3709. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Wang, Y.Y.; Xu, D.G.; Xu, W.T.; Liu, P.X.; Yan, D.X.; Duan, P.; Zhong, K.; Shi, W.; Yao, J.Q. Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator. Appl. Phys. Lett. 2016, 108, 011107. [Google Scholar] [CrossRef]
- Wu, M.H.; Chiu, Y.C.; Wang, T.D.; Zhao, G.; Zukauskas, A.; Laurell, F.; Huang, Y.C. Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalite. Opt. Express 2016, 24, 25964–25973. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Ren, Y.C.; Xu, D.G.; Tang, L.H.; He, Y.X.; Song, C.; Chen, L.Y.; Li, C.Z.; Yan, C.; Yao, J.Q. Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal. Chin. Phys. B 2018, 27, 114213. [Google Scholar] [CrossRef]
- Kawase, K.; Shikata, J.I.; Ito, H. Terahertz wave parametric source. Phys. D Appl. Phys. 2002, 35, R1. [Google Scholar] [CrossRef]
- Shikata, J.I.; Kawase, K.; Karino, K.I.; Taniuchi, T.; Ito, H. Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals. IEEE Trans. Microw. Theory Tech. 2000, 48, 653–661. [Google Scholar] [CrossRef]
- Lee, A.; He, Y.; Pask, H. Frequency-Tunable THz Source Based on Stimulated Polariton Scattering in Mg:LiNbO3. IEEE J. Quantum Electron. 2013, 49, 357–364. [Google Scholar] [CrossRef]
- Wang, W.T.; Zhang, X.Y.; Wang, Q.P.; Cong, Z.H.; Chen, X.H.; Liu, Z.J.; Wang, C. Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO3 crystal. Opt. Lett. 2014, 39, 754–757. [Google Scholar] [CrossRef]
- Tang, G.Q.; Cong, Z.H.; Qin, Z.G.; Zhang, X.Y.; Wang, W.T.; Wu, D.; Zhang, S.J. Energy scaling of terahertz-wave parametric sources. Opt. Express 2015, 23, 4144–4152. [Google Scholar] [CrossRef]
- Zhang, R.L.; Qu, Y.C.; Zhao, W.J.; Liu, C.; Chen, Z.L. Si-prism-array coupled terahertz-wave parametric oscillator with pump light totally reflected at the terahertz-wave exit surface. Opt. Lett. 2016, 41, 4016–4019. [Google Scholar] [CrossRef]
- Ortega, T.A. Frequency Extension of Solid-State Terahertz Lasers. Ph.D. Thesis, Macquarie University, Sydney, Australia, 2017. [Google Scholar]
- Edwards, T.J.; Walsh, D.; Spurr, M.B.; Rae, C.F.; Dunn, M.H.; Browne, P.G. Compact source of continuously and widely-tunable terahertz radiation. Opt. Express 2006, 14, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.A.; Browne, P.G.; Dunn, M.H.; Rae, C.F. Intracavity parametric generation of nanosecond terahertz radiation using quasi-phase-matching. Opt. Express 2010, 18, 13951–13963. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Pask, H.M. Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering. Opt. Lett. 2014, 39, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Ortega, T.A.; Pask, H.M.; Spence, D.J.; Lee, A.J. Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output. Opt. Express 2016, 24, 10254–10264. [Google Scholar] [CrossRef] [PubMed]
- Ortega, T.A.; Pask, H.M.; Spence, D.J.; Lee, A.J. THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective teflon coating. Opt. Express 2017, 25, 3991–3999. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Spence, D.J.; Pask, H.M. Tunable THz polariton laser based on 1342 nm wavelength for enhanced terahertz wave extraction. Opt. Lett. 2017, 42, 2691–2694. [Google Scholar] [CrossRef] [PubMed]
- Tidwell, S.C.; Seamans, J.F.; Bowers, M.S.; Cousins, A.K. Scaling CW diode-end-pumped Nd:YAG lasers to high average powers. IEEE J. Quantum Electron. 1992, 28, 997–1009. [Google Scholar] [CrossRef]
- Welford, D.; Rines, D.M.; Dinerman, B.J. Efficient TEM00-mode operation of a laser-diode side-pumped Nd: YAG laser. Opt. Lett. 1991, 16, 1850–1852. [Google Scholar] [CrossRef]
- Konno, S.; Fujikawa, S.; Yasui, K. 80W cw TEM00 1064 nm beam generation by use of a diode-side-pumped Nd:YAG rod laser. Appl. Phys. Lett. 1997, 70, 2650–2651. [Google Scholar] [CrossRef]
- Yi, J.; Moon, H.J.; Lee, J. Diode-pumped 100-W green Nd:YAG rod laser. Appl. Opt. 2004, 43, 3732–3737. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Li, H.; Yao, J.; Tsang, Y.H. 104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser. Opt. Express 2007, 15, 3991–3997. [Google Scholar] [CrossRef] [PubMed]
- Li, S.T.; Zhang, X.Y.; Wang, Q.P.; Zhang, X.L.; Cong, Z.H.; Zhang, H.N.; Wang, J.Y. Diode-side-pumped intracavity frequency-doubled Nd: YAG/BaWO4 Raman laser generating average output pow of 3.14 W at 590 nm. Opt. Lett. 2007, 32, 2951–2953. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Bo, Y.; Yang, F.; Wang, Z.C.; Xu, Y.T.; Wang, Y.B.; Gao, H.W.; Peng, Q.J.; Cui, D.F.; Xu, Z.Y. 106.5 W high beam quality diode-side-pumped Nd:YAG laser at 1123 nm. Opt. Express 2010, 18, 7923–7928. [Google Scholar]
- Kojima, T.; Yasui, K. Efficient diode side-pumping configuration of a Nd:YAG rod laser with a diffusive cavity. Appl. Opt. 1997, 36, 4981–4984. [Google Scholar] [CrossRef]
- Golla, D.; Knoke, S.; Schöne, W.; Ernst, G.; Bode, M.; Tünnermann, A.; Welling, H. 300-W cw diode-laser side-pumped Nd:YAG rod laser. Opt. Lett. 1995, 20, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.T.; Cong, Z.H.; Liu, Z.J.; Zhang, X.Y.; Qin, Z.G.; Tang, G.Q.; Li, N.; Zhang, Y.G.; Lu, Q.M. THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal. Opt. Express 2014, 22, 17092–17098. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.T.; Austin, W.L.; Powell, R.C. Intracavity Raman conversion and Raman beam cleanup. Opt. Mater. 1999, 11, 353–371. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Zhang, X.; Cong, Z.; Liu, Z.; Chen, X.; Qin, Z.; Wang, P.; Xu, J.; Wang, Z.; Ming, N. Enhancement of Intracavity-Pumped Terahertz Parametric Oscillator Power by Adopting Diode-Side Pumped Configuration Based on KTiOPO4 Crystal. Crystals 2019, 9, 666. https://doi.org/10.3390/cryst9120666
Gao F, Zhang X, Cong Z, Liu Z, Chen X, Qin Z, Wang P, Xu J, Wang Z, Ming N. Enhancement of Intracavity-Pumped Terahertz Parametric Oscillator Power by Adopting Diode-Side Pumped Configuration Based on KTiOPO4 Crystal. Crystals. 2019; 9(12):666. https://doi.org/10.3390/cryst9120666
Chicago/Turabian StyleGao, Feilong, Xingyu Zhang, Zhenhua Cong, Zhaojun Liu, Xiaohan Chen, Zengguang Qin, Peng Wang, Jinjin Xu, Zecheng Wang, and Na Ming. 2019. "Enhancement of Intracavity-Pumped Terahertz Parametric Oscillator Power by Adopting Diode-Side Pumped Configuration Based on KTiOPO4 Crystal" Crystals 9, no. 12: 666. https://doi.org/10.3390/cryst9120666
APA StyleGao, F., Zhang, X., Cong, Z., Liu, Z., Chen, X., Qin, Z., Wang, P., Xu, J., Wang, Z., & Ming, N. (2019). Enhancement of Intracavity-Pumped Terahertz Parametric Oscillator Power by Adopting Diode-Side Pumped Configuration Based on KTiOPO4 Crystal. Crystals, 9(12), 666. https://doi.org/10.3390/cryst9120666