Crystal Structure of a Putative Modulator of Gyrase (TldE) from Thermococcus kodakarensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macromolecule Production
2.2. Crystallization, Data Collection, and Processing
2.3. Structure Solution and Refinement
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allali, N.; Afif, H.; Couturier, M.; Van Melderen, L. The Highly Conserved TldD and TldE Proteins of Escherichia coli are Involved in Microcin B17 Processing and in CcdA Degradation. J. Bacteriol. 2002, 184, 3224–3231. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Microcin B17: Posttranslational Modifications and their Biological Implications. Proc. Natl. Acad. Sci. USA 1994, 91, 4618–4620. [Google Scholar] [CrossRef]
- Rodríguez-Sáinz, M.C.; Hernández-Chico, C.; Moreno, F. Molecular Characterization of pmbA, an Escherichia coli Chromosomal Gene Required for the Production of the Antibiotic Peptide MccB17. Mol. Microbiol. 1990, 4, 1921–1932. [Google Scholar] [CrossRef] [PubMed]
- Genilloud, O.; Moreno, F.; Kolter, R. DNA Sequence, Products, and Transcriptional Pattern of the Genes Involved in Production of the DNA Replication Inhibitor Microcin B17. J. Bacteriol. 1989, 171, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- San Millan, J.L.; Hernandez-Chico, C.; Pereda, P.; Moreno, F. Cloning and Mapping of the Genetic Determinants for Microcin B17 Production and Immunity. J. Bacteriol. 1985, 163, 275–281. [Google Scholar]
- Davagnino, J.; Herrero, M.; Furlong, D.; Moreno, F.; Kolter, R. The DNA Replication Inhibitor Microcin B17 is a Forty-Three-Amino-Acid Protein Containing Sixty Percent Glycine. Proteins 1986, 1, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Milne, J.C.; Madison, L.L.; Kolter, R.; Walsh, C.T. From Peptide Precursors to Oxazole and Thiazole-Containing Peptide Antibiotics: Microcin B17 Synthase. Science 1996, 274, 1188–1193. [Google Scholar] [CrossRef]
- Garrido, M.C.; Herrero, M.; Kolter, R.; Moreno, F. The Export of The DNA Replication Inhibitor Microcin B17 Provides Immunity for the Host Cell. EMBO J. 1988, 7, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- San Millán, J.L.; Kolter, R.; Moreno, F. Plasmid Genes Required for Microcin B17 Production. J. Bacteriol. 1985, 163, 1016–1020. [Google Scholar] [PubMed]
- Reece, R.J.; Maxwell, A. DNA Gyrase: Structure and Function. Crit. Rev. Biochem. Mol. Biol. 1991, 26, 335–375. [Google Scholar] [CrossRef]
- Herrero, M.; Moreno, F. Microcin B17 Blocks DNA Replication and Induces the SOS system in Escherichia coli. Microbiology 1986, 132, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Mayo, O.; Hernández-Chico, C.; Moreno, F. Microcin B17, A Novel Tool for Preparation of Maxicells: Identification of Polypeptides Encoded by the IncFII Minireplicon pMccB17. J. Bacteriol. 1988, 170, 2414–2417. [Google Scholar] [CrossRef]
- Vizan, J.L.; Hernández-Chico, C.; del Castillo, I.; Moreno, F. The Peptide Antibiotic Microcin B17 Induces Double-Strand Cleavage of DNA Mediated by E. coli DNA Gyrase. EMBO J. 1991, 10, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Peng, N.; Han, W.; Mei, Y.; Chen, Z.; Feng, X.; Liang, Y.X.; She, Q. An Archaeal Protein Evolutionarily Conserved in Prokaryotes is a Zinc-Dependent Metalloprotease. Biosci. Rep. 2012, 32, 609–618. [Google Scholar] [CrossRef]
- Ghilarov, D.; Serebryakova, M.; Stevenson, C.E.; Hearnshaw, S.J.; Volkov, D.S.; Maxwell, A.; Lawson, D.M.; Severinov, K. The Origins of Specificity in the Microcin-Processing Protease TldD/E. Structure 2017, 25, 1549–1561. [Google Scholar] [CrossRef] [PubMed]
- Karoui, H.; Bex, F.; Dreze, P.; Couturier, M. Ham22, a Mini-F Mutation Which is Lethal to Host Cell and Promotes RecA-dependent Induction of Lambdoid Prophage. EMBO J. 1983, 2, 1863–1868. [Google Scholar] [CrossRef]
- Maki, S.; Takiguchi, S.; Miki, T.; Horiuchi, T. Modulation of DNA Supercoiling Activity of Escherichia coli DNA Gyrase by F Plasmid Proteins. Antagonistic Actions of LetA (CcdA) and LetD (CcdB) Proteins. J. Biol. Chem. 1992, 267, 12244–12251. [Google Scholar]
- Rife, C.; Schwarzenbacher, R.; McMullan, D.; Abdubek, P.; Ambing, E.; Axelrod, H.; Biorac, T.; Canaves, J.M.; Chiu, H.J.; Deacon, A.M.; et al. Crystal Structure of a Putative Modulator of DNA Gyrase (pmbA) from Thermotoga maritima at 1.95 Å Resolution Reveals a New Fold. Proteins Struct. Funct. Bioinf. 2005, 61, 444–448. [Google Scholar] [CrossRef]
- Fukui, T.; Atomi, H.; Kanai, T.; Matsumi, R.; Fujiwara, S.; Imanaka, T. Complete Genome Sequence of the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1 and Comparison with Pyrococcus Genomes. Genome Res. 2005, 15, 352–363. [Google Scholar] [CrossRef]
- Pham, K.; LaForge, K.; Kreek, M. Sticky-end PCR: New Method for Subcloning. Biotechniques 1998, 25, 206–208. [Google Scholar]
- Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [PubMed]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser Crystallographic Software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Cowtan, K. Coot: Model-Building Tools for Molecular Graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-Atom Structure Validation for Macromolecular Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Holm LaRo, P. Dali Server: Conservation Mapping in 3D. Nucleic Acids Res. 2010, 38, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed]
Source Organism | Thermococcus Kodakarensis |
---|---|
Forward primer | F1: CATGGAGAACCTCATACGCTTCGGC F2: GAGAACCTCATACGCTTCGGC |
Reverse primer | R1: GTCACTTGCCCGCTATCTTCA R2: TCGAGTCACTTGCCCGCTATCTTCA |
Cloning vector | pHAT2 |
Expression host | E. coli BL21(DE3) |
Complete amino-acid sequence of the construct produced | MSHHHHHHSMENLIRFGEKFFDELEIAVYRS RDIEASVELNEISMASTRSGALTIIRGIKDKRLG LAIVDSDEPEKVKEAIEQAAKMAKLNSPDEK WVSLPEPGKYREKPKPNYELKEASPDILVEKL VKGIKLAREKDKNAVVAGGAGGVSWEERHV LNSHGLDVFQEGGAAYMYLEIVGRKGSVVTP GIFDFDARRDLNLDVEGIVERAVQKVQWAY NVVPSKNEEVPLIFGPWAIAGLFSYTLLPAFSG ERLVKETTPLAGKVGEKIASEVITLYDDPFHPL SLRPTIADDEGVPTRKNVLIENGAFKGFVWD NYWAKIYGTESTGNGKRDIRSGGINIGFHSVVI ENGKRSLEDIIGEIDRGYLVDGLQGAHSSNPD NGNFAVTANPAFLIEDGEVKGSAVFLIAGNV YELLQQASEVSKEQTVMPFMNTMITPHIKFEN VKIAGK |
TldE | |
---|---|
Method | Sitting-drop vapor diffusion |
Plate type | 96-well plates |
Temperature | 291 K |
Protein concentration (mg/mL) | 10 |
Buffer composition of protein solution | 20 mM Tris-HCl, pH 7.5, 150 mM NaCl |
Composition of reservoir solution | 0.02 M Calcium Chloride, 0.1 M Sodium Acetate pH 4.6, 30% v/v MPD |
Volume and ratio of drop | 0.5 μL, 0.25 μL protein solution: 0.25 μL reservoir solution |
Volume of reservoir (μL) | 35 |
Proteins for Crystallization | TkTIDE |
---|---|
Diffraction source | BL17U1, SSRF |
Wavelength (Å) | 0.9791 |
Temperature (K) | 100 |
Detector | ADSC Q315 CCD |
Crystal-detector distance (mm) | 300 |
Rotation range per image (°) | 0.5 |
Total rotation range (°) | 280 |
Exposure time per image (s) | 0.70 |
Space group | P43212 |
a, b, c (Å) | 104.50 104.50 253.93 |
α, β, γ (°) | 90.00, 90.00, 90.00 |
Mosaicity (°) | 0.30 |
Resolution range (Å) | 30.78–2.35 (2.44–2.35) a |
Total no. of reflections | 659251 |
No. of unique reflections | 59216 (2896) |
Completeness (%) | 99.90 (100.00) |
Redundancy | 11.10 (11.60) |
<I/σ(I)> | 29.67 (2.92) |
Rr.i.m. | 0.05 (0.51) |
Overall B factor from Wilson plot (Å2) | 44.15 |
TkTIDE | |
---|---|
Resolution range (Å) | 30.78–2.35 (2.44–2.35) a |
Rmerge b (%) | 16.30 (16.38) |
Rmeas (%) | 17.50 (17.44) |
CC1/2 (%) | 99.60 (71.30) |
Rwork c (%) | 19.56 (27.46) |
Rfree (%) | 22.83 (29.58) |
Number of non-hydrogen atoms | 7110 |
macromolecules | 6854 |
Protein residues | 884 |
R.m.s.d. | |
Bond lengths (Å) | 0.009 |
Bond angle (°) | 1.34 |
Ramachandran plot (%) d | |
Ramachandran favored | 97.95 |
Ramachandran allowed | 2.05 |
Ramachandran outliers | 0.00 |
Rotamer outliers | 0.69 |
Clashscore | 6.20 |
Average B-factor | 44.82 |
macromolecules | 44.74 |
solvent | 46.89 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Z.; Zhao, Y.; Cheng, X.; Liu, Y.; Zhang, S.; Liu, J. Crystal Structure of a Putative Modulator of Gyrase (TldE) from Thermococcus kodakarensis. Crystals 2019, 9, 107. https://doi.org/10.3390/cryst9020107
Zhang X, Li Z, Zhao Y, Cheng X, Liu Y, Zhang S, Liu J. Crystal Structure of a Putative Modulator of Gyrase (TldE) from Thermococcus kodakarensis. Crystals. 2019; 9(2):107. https://doi.org/10.3390/cryst9020107
Chicago/Turabian StyleZhang, Xin, Zhengqun Li, Yanxiang Zhao, Xilan Cheng, Yang Liu, Shihong Zhang, and Junfeng Liu. 2019. "Crystal Structure of a Putative Modulator of Gyrase (TldE) from Thermococcus kodakarensis" Crystals 9, no. 2: 107. https://doi.org/10.3390/cryst9020107
APA StyleZhang, X., Li, Z., Zhao, Y., Cheng, X., Liu, Y., Zhang, S., & Liu, J. (2019). Crystal Structure of a Putative Modulator of Gyrase (TldE) from Thermococcus kodakarensis. Crystals, 9(2), 107. https://doi.org/10.3390/cryst9020107