A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals
Abstract
:1. Introduction
2. Principles and Experiments
2.1. Principles
2.2. Setup and Experiments
3. Results and Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sato, S. Liquid-crystal lens-cells with variable focal length. Jpn. J. Appl. Phys. 1979, 18, 1679–1684. [Google Scholar] [CrossRef]
- Ren, H.; Wu, S.T. Introduction to Adaptive Lenses; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 75. [Google Scholar]
- Lin, Y.H.; Chen, H.S. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt. Express 2013, 21, 9428–9436. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.S.; Rastani, K. Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays. Opt. Lett. 1991, 16, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Nose, T.; Masuda, S.; Sato, S. A liquid crystal microlens with hole-patterned electrodes on both substrates. Jpn. J. Appl. Phys. 1992, 31, 1643–1646. [Google Scholar] [CrossRef]
- Nose, T.; Masuda, S.; Sato, S.; Li, J.; Chien, L.C.; Bos, P.J. Effects of low polymer content in a liquid-crystal microlens. Opt. Lett. 1997, 22, 351–353. [Google Scholar] [CrossRef]
- Klaus, W.; Ide, M.; Hayano, Y.; Morokawa, S.; Arimoto, Y. Adaptive LC lens array and its application. Proc. SPIE 1999, 3635, 66–73. [Google Scholar] [CrossRef]
- Kao, Y.Y.; Chao, P.P. A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time. Sensors 2011, 11, 5402–5415. [Google Scholar] [CrossRef]
- Choi, Y.; Choi, T.H.; Woo, J.-H.; Jeon, B.G.; Yoon, T.H. Fast turn-off switching of vertically-aligned negative liquid crystals by fine patterning of pixel electrodes. Crystals 2017, 7, 201. [Google Scholar] [CrossRef]
- Ren, H.; Fan, H.Y.; Gauza, S.; Wu, S.T. Tunable microlens arrays using polymer network liquid crystal. Opt. Commun. 2004, 230, 267–271. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.T. Polarization independent adaptive microlens with a blue-phase liquid crystal. Opt. Express 2011, 19, 8045–8050. [Google Scholar] [CrossRef]
- Pishnyak, O.; Sato, S.; Lavrentovich, O.D. Electrically tunable lens based on a dual-frequency nematic liquid crystal. Appl. Opt. 2006, 45, 4576–4582. [Google Scholar] [CrossRef]
- Ren, H.; Fan, Y.H.; Wu, S.T. Liquid-crystal microlens arrays using patterned polymer networks. Opt. Lett. 2004, 29, 1608–1610. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, F.; Du, T.; Tam, A.M.W.; Ma, Y.; Srivastava, A.K.; Chigrinov, V.; Kwok, H. Liquid crystal Fresnel zone lens based on single-side-patterned photoalignment layer. Appl. Opt. 2014, 53, 2026–2029. [Google Scholar] [CrossRef] [PubMed]
- Tabiryan, N.V.; Serak, S.V.; Nersisyan, S.R.; Roberts, D.E.; Zeldovich, B.Y.; Steeves, D.M.; Kimball, B.R. Broadband waveplate lenses. Opt. Express 2016, 24, 7091–7102. [Google Scholar] [CrossRef]
- Duan, W.; Chen, P.; Wei, B.Y.; Ge, S.J.; Liang, X.; Hu, W.; Lu, Y.Q. Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating. Opt. Mater. Express 2016, 6, 597–602. [Google Scholar] [CrossRef]
- Berry, M.V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 1987, 34, 1401–1407. [Google Scholar] [CrossRef]
- Schadt, M. Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects. Mol. Cryst. Liq. Cryst. 1982, 89, 77–92. [Google Scholar] [CrossRef]
- Xianyu, H.; Wu, S.T.; Lin, C.L. Dual frequency liquid crystals: A review. Liq. Cryst. 2009, 36, 717–726. [Google Scholar] [CrossRef]
- Khoo, C.; Wu, S.T. Optics and Nonlinear Optics of Liquid Crystals; World Scientific: Singapore, 1993. [Google Scholar]
- Wen, C.H.; Wu, S.T. Dielectric heating effects of dual-frequency liquid crystals. Appl. Phys. Lett. 2005, 86, 231104. [Google Scholar] [CrossRef]
- Hsiao, Y.C.; Lee, W. Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect. Opt. Express 2013, 21, 23927–23933. [Google Scholar] [CrossRef]
- Hsiao, Y.C.; Tang, C.Y.; Lee, W. Fast-switching bistable cholesteric intensity modulator. Opt. Express 2011, 19, 9744–9749. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Chen, P.; Ge, S.J.; Wei, B.Y.; Hu, W.; Lu, Y.Q. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals. Opt. Express 2017, 25, 14059–14064. [Google Scholar] [CrossRef] [PubMed]
- Chigrinov, V.; Pikin, S.; Verevochnikov, A.; Kozenkov, V.; Khazimullin, M.; Ho, J.; Huang, D.D.; Kwok, H.S. Diffusion model of photoaligning in azo-dye layers. Phys. Rev. E 2004, 69, 061713. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Hu, W.; Hu, H.C.; Lin, X.W.; Zhu, G.; Choi, J.W.; Chigrinov, V.; Lu, Q.Y. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt. Express 2012, 20, 16684–16689. [Google Scholar] [CrossRef]
- Chen, P.; Wei, B.Y.; Ji, W.; Ge, S.J.; Hu, W.; Xu, F.; Chigrinov, V.; Lu, Y.Q. Arbitrary and reconfigurable optical vortex generation: A high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Res. 2015, 3, 133–139. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, W.; Chen, P.; Ge, S.-J.; Liang, X.; Hu, W. A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals. Crystals 2019, 9, 111. https://doi.org/10.3390/cryst9020111
Duan W, Chen P, Ge S-J, Liang X, Hu W. A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals. Crystals. 2019; 9(2):111. https://doi.org/10.3390/cryst9020111
Chicago/Turabian StyleDuan, Wei, Peng Chen, Shi-Jun Ge, Xiao Liang, and Wei Hu. 2019. "A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals" Crystals 9, no. 2: 111. https://doi.org/10.3390/cryst9020111
APA StyleDuan, W., Chen, P., Ge, S. -J., Liang, X., & Hu, W. (2019). A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals. Crystals, 9(2), 111. https://doi.org/10.3390/cryst9020111