Combustion Synthesis of FeAl-based Composites from Thermitic and Intermetallic Reactions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Self-Propagating Combustion Wave Kinetics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deevi, S.C.; Sikka, V.K. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics 1996, 4, 357–375. [Google Scholar] [CrossRef]
- Kothari, K.; Radhakrishnan, R.; Wereley, N.M. Advances in gamma titanium aluminides and their manufacturing techniques. Prog. Aerosp. Sci. 2012, 55, 1–16. [Google Scholar] [CrossRef]
- Hanada, S. Niobium aluminides. Curr. Opin. Solid State Mater. Sci. 1997, 2, 279–283. [Google Scholar] [CrossRef]
- Stoloff, N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A 1998, 258, 1–14. [Google Scholar] [CrossRef]
- Joslin, D.L.; Easton, D.S.; Liu, C.T.; Babu, S.S.; David, S.A. Processing of Fe3Al and FeAl alloys by reaction synthesis. Intermetallics 1995, 3, 467–481. [Google Scholar] [CrossRef]
- Masmoudi, M.; Mhadhbi, M.; Escoda, L.; Suñol, J.J.; Khitouni, M. Microstructural evolution and corrosion behavior of nanocrystalline FeAl synthesized by mechanical alloying. J. Alloys Compd. 2016, 657, 330–335. [Google Scholar] [CrossRef]
- Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B. Melting and casting of FeAl-based cast alloy. Mater. Sci. Eng. A 1998, 258, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, K.; Stepniowski, W.J.; Salerno, M. Amino acids aided sintering for the formation of highly porous FeAl intermetallic alloys. Materials 2017, 10, 746. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.; Stepniowski, W.J.; Salerno, M. Fabrication of FeAl intermetallic foams by tartaric acid-assisted self-propagating high-temperature synthesis. Materials 2018, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Dudina, D.V.; Bokhonov, B.B.; Legan, M.A.; Novoselov, A.N.; Skovorodin, I.N.; Bulina, N.V.; Esikov, M.A.; Mali, V.I. Analysis of the formation of FeAl with a high open porosity during electric current-assisted sintering of loosely packed Fe–Al powder mixtures. Vacuum 2017, 146, 74–78. [Google Scholar] [CrossRef]
- Shokati, A.A.; Parvin, N.; Shokati, M. Combustion synthesis of NiAl matrix composite powder reinforced by TiB2 and TiN particulates from Ni–Al–Ti–BN reaction system. J. Alloys Compd. 2014, 585, 637–643. [Google Scholar] [CrossRef]
- Yeh, C.L.; Ke, C.Y.; Chen, Y.C. In situ formation of TiB2/TiC and TiB2/TiN reinforced NiAl by self-propagating combustion synthesis. Vacuum 2018, 151, 185–188. [Google Scholar] [CrossRef]
- Amiriyan, M.; Blais, C.; Savoie, S.; Schulz, R.; Cariépy, M.; Alamdari, H. Trio-mechanical properties of HVOF deposited Fe3Al coatings reinforced with TiB2 particles for wear-resistance applications. Materials 2016, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, M.; Enayati, M.H.; Karimzadeh, F. The structure and mechanical properties of Fe3Al–30 vol.% Al2O3 nanoparticles. J. Alloys Compd. 2009, 488, 134–137. [Google Scholar] [CrossRef]
- Karimi, H.; Hadi, M.; Ebrahimzadeh, I.; Farhang, M.R.; Sadeghi, M. High-temperature oxidation behavior of WC-FeAl composite fabricated by spark plasma sintering. Ceram. Int. 2018, 44, 17147–17153. [Google Scholar] [CrossRef]
- Kim, Y.-I.; An, G.S.; Lee, W.; Jang, J.M.; Park, B.-G.; Jung, Y.-G.; Choi, S.-C.; Ko, S.-H. In-situ fabrication of TiC–Fe3Al cermet. Ceram. Int. 2017, 43, 5907–5913. [Google Scholar] [CrossRef]
- Schneibel, J.H.; Carmichael, C.A.; Specht, E.D.; Subramanian, R. Liquid-phase sintered iron aluminide-ceramic composites. Intermetallics 1997, 5, 61–67. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, X.; Sun, Z.; Jiao, X.; Akhtar, F.; Wang, J.; Feng, P. A novel fabrication strategy for highly porous FeAl/Al2O3 composite by thermal explosion in vacuum. Vacuum 2018, 149, 225–230. [Google Scholar] [CrossRef]
- Sharifitabar, M.; Vahdati Khaki, J.; Haddad Sabzevar, M. Formation mechanism of TiC–Al2O3–Fe3Al composites during self-propagating high-temperature synthesis of TiO2–Al–C–Fe system. Ceram. Int. 2016, 42, 12361–12370. [Google Scholar] [CrossRef]
- Yeh, C.L.; Ke, C.Y. In situ formation of TiB2/Al2O3 reinforced Fe3Al by combustion synthesis with thermite reduction. Metals 2018, 8, 288. [Google Scholar] [CrossRef]
- Merzhanov, A.G. Combustion processes that synthesize materials. J. Mater. Process. Technol. 1996, 56, 222–241. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Chen, K. Combustion synthesis of refractory and hard materials: A review. Int. J. Refract. Met. Hard Mater. 2013, 39, 90–102. [Google Scholar] [CrossRef]
- Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017, 62, 203–239. [Google Scholar] [CrossRef]
- Wang, L.L.; Munir, Z.A.; Maximov, Y.M. Thermite reactions: Their utilization in the synthesis and processing of materials. J. Mater. Sci. 1993, 28, 3693–3708. [Google Scholar] [CrossRef]
- Yeh, C.L.; Yang, W.J. Formation of MAX solid solutions (Ti,V)2AlC and (Cr,V)2AlC with Al2O3 addition by SHS involving aluminothermic reduction. Ceram. Int. 2013, 39, 7537–7544. [Google Scholar] [CrossRef]
- Yeh, C.L.; Su, S.H.; Chang, H.Y. Effects of TiC addition on combustion synthesis of NiAl in SHS mode. J. Alloys Compd. 2005, 398, 85–93. [Google Scholar] [CrossRef]
- Yeh, C.L.; Su, S.H. In situ formation of TiAl-TiB2 composite by SHS. J. Alloys Compd. 2006, 407, 150–156. [Google Scholar] [CrossRef]
- Yeh, C.L.; Yeh, C.C. Preparation of CoAl intermetallic compound by combustion synthesis in self-propagating mode. J. Alloys Compd. 2005, 388, 241–249. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chen, Y.L. An experimental study on self-propagating high-temperature synthesis in the Ta-B4C system. J. Alloys Compd. 2009, 478, 163–167. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chen, W.H. Preparation of niobium borides NbB and NbB2 by self-propagating combustion synthesis. J. Alloys Compd. 2006, 420, 111–116. [Google Scholar] [CrossRef]
- Rafiei, M.; Enayati, M.H.; Karimzadeh, F. Kinetic analysis of thermite reaction in Al–Ti–Fe2O3 system to produce (Fe,Ti)3Al–Al2O3 nanocomposite. Powder Technol. 2014, 253, 553–560. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-L.; Ke, C.-Y. Combustion Synthesis of FeAl-based Composites from Thermitic and Intermetallic Reactions. Crystals 2019, 9, 127. https://doi.org/10.3390/cryst9030127
Yeh C-L, Ke C-Y. Combustion Synthesis of FeAl-based Composites from Thermitic and Intermetallic Reactions. Crystals. 2019; 9(3):127. https://doi.org/10.3390/cryst9030127
Chicago/Turabian StyleYeh, Chun-Liang, and Chih-Yao Ke. 2019. "Combustion Synthesis of FeAl-based Composites from Thermitic and Intermetallic Reactions" Crystals 9, no. 3: 127. https://doi.org/10.3390/cryst9030127
APA StyleYeh, C. -L., & Ke, C. -Y. (2019). Combustion Synthesis of FeAl-based Composites from Thermitic and Intermetallic Reactions. Crystals, 9(3), 127. https://doi.org/10.3390/cryst9030127