Growth of Ga2O3 Nanowires via Cu-As-Ga Ternary Phase Diagram
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, H.; Shuanglin, Y.; Zhongli, W.; Qiang, W.; Chengying, S.; Xu, Z.; Bai, X.D.; Chengcun, T.; Changzhi, G. Preparation and electrical properties of ultrafine Ga2O3 nanowires. J. Phys. Chem. B 2006, 110, 796–800. [Google Scholar]
- Higashiwaki, M.; Jessen, G.H. Guest Editorial: The dawn of gallium oxide microelectronics. Appl. Phys. Lett. 2018, 112, 060401. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.L.; Wang, Q.; Gu, C.Z.; Tang, C.C.; Bando, Y.; Golberg, D. Quasi-Aligned Ga2O3 Nanowires Grown on Brass Wire Meshes and Their Electrical and Field-Emission Properties. J. Phys. Chem. C 2009, 113, 1980–1983. [Google Scholar] [CrossRef]
- Yan, R.X.; Gargas, D.; Yang, P.D. Nanowire photonics. Nat. Photonics 2009, 3, 569–576. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wu, J.; Aagesen, M.; Liu, H.Y. III-V nanowires and nanowire optoelectronic devices. J. Phys. D-Appl. Phys. 2015, 48, 463001. [Google Scholar] [CrossRef]
- Xing, C.K.L.; Zhenzhong, Z.; Chunrui, W.; Binghui, L.; Haifeng, Z.; Dongxu, Z.; Dezhen, S. A Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction. Acs Appl. Mater. Interfaces 2016, 8, 4185–4191. [Google Scholar]
- Ali, H.; Zhang, Y.Y.; Tang, J.; Peng, K.; Sun, S.B.; Sun, Y.; Song, F.L.; Falak, A.; Wu, S.Y.; Qian, C.J.; et al. High-Responsivity Photodetection by a Self-Catalyzed Phase-Pure p-GaAs Nanowire. Small 2018, 14, 1704429. [Google Scholar] [CrossRef]
- Bae, J.; Kim, H.W.; Kang, I.H.; Yang, G.; Kim, J. High breakdown voltage quasi-two-dimensional beta-Ga2O3 field-effect transistors with a boron nitride field plate. Appl. Phys. Lett. 2018, 112, 122102. [Google Scholar] [CrossRef]
- Bae, H.J.; Yoo, T.H.; Yoon, Y.; Lee, I.G.; Kim, J.P.; Cho, B.J.; Hwang, W.S. High-Aspect Ratio beta-Ga2O3 Nanorods via Hydrothermal Synthesis. Nanomaterials 2018, 8, 594. [Google Scholar] [CrossRef]
- Choi, Y.C.; Kim, W.S.; Park, Y.S.; Lee, S.M.; Bae, D.J.; Lee, Y.H.; Park, G.S.; Choi, W.B.; Lee, N.S.; Kim, J.M. Catalytic growth of beta-Ga2O3 nanowires by arc discharge. Adv. Mater. 2000, 12, 746–750. [Google Scholar] [CrossRef]
- Dai, Z.R.; Pan, Z.W.; Wang, Z.L. Gallium oxide nanoribbons and nanosheets. J. Phys. Chem. B 2002, 106, 902–904. [Google Scholar] [CrossRef]
- Hu, J.Q.; Li, Q.; Meng, X.M.; Lee, C.S.; Lee, S.T. Synthesis of beta-Ga2O3 nanowires by laser ablation. J. Phys. Chem. B 2002, 106, 9536–9539. [Google Scholar] [CrossRef]
- Li, J.Y.; Qiao, Z.Y.; Chen, X.L.; Chen, L.; Cao, Y.G.; He, M.; Li, H.; Cao, Z.M.; Zhang, Z. Synthesis of beta-Ga2O3 nanorods. J. Alloy. Compd. 2000, 306, 300–302. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Kong, Y.C.; Wang, Y.Z.; Du, X.; Bai, Z.G.; Wang, J.J.; Yu, D.P.; Ding, Y.; Hang, Q.L.; Feng, S.Q. Ga2O3 nanowires prepared by physical evaporation. Sol. State Commun. 1999, 109, 677–682. [Google Scholar] [CrossRef]
- Kumar, S.; Tessarek, C.; Sarau, G.; Christiansen, S.; Singh, R. Self-Catalytic Growth of β-Ga2O3 Nanostructures by Chemical Vapor Deposition. Adv. Eng. Mater. 2015, 17, 709–715. [Google Scholar] [CrossRef]
- Sinha, G.; Datta, A.; Panda, S.K.; Chavan, P.G.; More, M.A.; Joag, D.S.; Patra, A. Self-catalytic growth and field-emission properties of Ga2O3 nanowires. J. Phys. D-Appl. Phys. 2009, 42, 185409. [Google Scholar] [CrossRef]
- Ning, H.; Fengyun, W.; Zaixing, Y.; Senpo, Y.; Guofa, D.; Hao, L.; Ming, F.; Takfu, H.; Ho, J.C. Low-temperature growth of highly crystalline β-Ga2O3 nanowires by solid-source chemical vapor deposition. Nanoscale Res. Lett. 2014, 9, 347. [Google Scholar]
- Chang, K.W.; Wu, J.J. Low-temperature growth well-aligned beta-Ga2O3 nanowires from a single-source organometallic precursor. Adv. Mater. 2004, 16, 545–549. [Google Scholar] [CrossRef]
- Chun, H.J.; Choi, Y.S. Controlled Structure of Gallium Oxide Nanowires. Mrs Proc. 2003, 789, 9042–9046. [Google Scholar] [CrossRef]
- Han, N.; Wang, F.; Hou, J.J.; Yip, S.P.; Lin, H.; Fang, M.; Xiu, F.; Shi, X.; Hung, T.F.; Ho, J.C. Manipulated Growth of GaAs Nanowires: Controllable Crystal Quality and Growth Orientations via a Supersaturation-Controlled Engineering Process. Cryst. Growth Des. 2012, 12, 6243–6249. [Google Scholar] [CrossRef]
- Ning, H.; Hou, J.J.; Fengyun, W.; Senpo, Y.; Yu-Ting, Y.; Zai-Xing, Y.; Guofa, D.; Takfu, H.; Yu-Lun, C.; Ho, J.C. GaAs nanowires: From manipulation of defect formation to controllable electronic transport properties. Acs Nano 2013, 7, 9138–9146. [Google Scholar]
- Ning, H.; Zai-Xing, Y.; Fengyun, W.; Guofa, D.; Senpo, Y.; Xiaoguang, L.; Tak Fu, H.; Yunfa, C.; Ho, J.C. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics. Acs Appl. Mater. Interfaces 2015, 7, 20454–20459. [Google Scholar]
- Wang, Y.; Hou, L.; Qin, X.; Ma, S.; Zhang, B.; Gou, H.; Gao, F. Fabrication of Single-Crystalline β-Ga2O3 Nanowires and Zigzag-Shaped Nanostructures. J. Phys. Chem. C 2007, 111, 17506–17511. [Google Scholar] [CrossRef]
- Zhou, W.; Ying, W.; Zhou, X.; Yang, Z.; Yin, Y.; Jie, Z.; Ning, H.; Ho, J.C.; Chen, Y. Controlled Growth of Heterostructured Ga/GaAs Nanowires with Sharp Schottky Barrier. Cryst. Growth Des. 2018, 18, 4438–4444. [Google Scholar]
- Du, Y.J.A.; Sakong, S.; Kratzer, P. As vacancies, Ga antisites, and Au impurities in zinc blende and wurtzite GaAs nanowire segments from first principles. Phys. Rev. B 2013, 87, 075308. [Google Scholar] [CrossRef]
- Morante, J.R.; Carceller, J.E.; Herms, A.; Cartujo, P.; Barbolla, J. Dpendence of the electron cross-section for the acceptor gold level in silion on the gold to donor ratio. Appl. Phys. Lett. 1982, 41, 656–658. [Google Scholar] [CrossRef]
- Renard, V.T.; Michael, J.; Patrice, G.; Peter, C.; Denis, R.; Amal, C.; Vincent, J. Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nat. Nanotechnol. 2009, 4, 654–657. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sanchez, A.M.; Sun, Y.; Wu, J.; Aagesen, M.; Huo, S.; Kim, D.; Jurczak, P.; Xu, X.; Liu, H. Influence of Droplet Size on the Growth of Self-Catalyzed Ternary GaAsP Nanowires. Nano Lett. 2016, 16, 1237–1243. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Kim, E.T.; Dao, K.A. Ag nanoparticle catalyst based on Ga2O3/GaAs semiconductor nanowire growth by VLS method. J. Mater. Sci. Mater. Electron. 2015, 26, 8747–8752. [Google Scholar] [CrossRef]
- Wang, H.; Lan, Y.; Zhang, J.; Crimp, M.A.; Ren, Z. Growth mechanism and elemental distribution of beta-Ga2O3 crystalline nanowires synthesized by cobalt-assisted chemical vapor deposition. J. Nanosci. Nanotechnol. 2012, 12, 3101–3107. [Google Scholar] [CrossRef]
- Arbiol, J.; Kalache, B.; Cabarrocas, P.R.I.; Morante, J.R.; Morral, A.F.I. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism. Nanotechnology 2007, 18, 305606. [Google Scholar] [CrossRef]
- Yao, Y.; Fan, S. Si nanowires synthesized with Cu catalyst. Mater. Lett. 2007, 61, 177–181. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.H.; Cho, S.; Lee, J.H.; Park, B.G. Switching and Conduction Mechanism of Cu/Si3N4/Si RRAM with CMOS Compatibility. In 2014 Silicon Nanoelectronics Workshop (SNW); IEEE: New York, NY, USA, 2014. [Google Scholar]
- Zhu, S.Y.; Chu, H.S.; Lo, G.Q.; Kwong, D.L. CMOS-Compatible Plasmonic Bragg Reflectors Based on Cu-Dielectric-Si Structures. IEEE Photonics Technol. Lett. 2013, 25, 2115–2118. [Google Scholar] [CrossRef]
- Ek, M.; Borg, B.M.; Johansson, J.; Dick, K.A. Diameter Limitation in Growth of III-Sb-Containing Nanowire Heterostructures. Acs Nano 2013, 7, 3668–3675. [Google Scholar] [CrossRef] [PubMed]
- Kodambaka, S.; Tersoff, J.; Reuter, M.C.; Ross, F.M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.Y.; Wu, X.F.; Zhang, J.L.; Han, N.; Chen, Y.F. Facile solution synthesis of Cu2O-CuO-Cu(OH)2 hierarchical nanostructures for effective catalytic ozone decomposition. Crystengcomm 2018, 20, 3096–3104. [Google Scholar] [CrossRef]
- Mandl, B.; Keplinger, M.; Messing, M.E.; Kriegner, D.; Wallenberg, R.; Samuelson, L.; Bauer, G.; Stangl, J.; Holy, V.; Deppert, K. Self-Seeded Axio-Radial InAs-InAs1-xPx Nanowire Heterostructures beyond “Common” VLS Growth. Nano Lett. 2018, 18, 144–151. [Google Scholar] [CrossRef]
- Dhalluin, F.; Baron, T.; Ferret, P.; Salem, B.; Gentile, P.; Harmand, J.C. Silicon nanowires: Diameter dependence of growth rate and delay in growth. Appl. Phys. Lett. 2010, 96, 133109. [Google Scholar] [CrossRef]
- Du, W.N.; Yang, X.G.; Pan, H.Y.; Wang, X.Y.; Ji, H.M.; Luo, S.; Ji, X.H.; Wang, Z.G.; Yang, T. Two Different Growth Mechanisms for Au-Free InAsSb Nanowires Growth on Si Substrate. Cryst. Growth Des. 2015, 15, 2413–2418. [Google Scholar] [CrossRef]
- Kashchiev, D. Dependence of the growth rate of nanowires on the nanowire diameter. Cryst. Growth Des. 2006, 6, 1154–1156. [Google Scholar] [CrossRef]
- Choi, K.H.; Cho, K.K.; Cho, G.B.; Ahn, H.J.; Kim, K.W. The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size. J. Cryst. Growth 2009, 311, 1195–1200. [Google Scholar] [CrossRef]
- Speight, J. Lange’s Handbook of Chemistry; Mc Graw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Izhnin, I.I.; Voitsekhovsky, A.V.; Korotaev, A.G.; Fitsych, O.I.; Bonchyk, A.Y.; Savytskyy, H.V.; Mynbaev, K.D.; Varavin, V.S.; Dvoretsky, S.A.; Mikhailov, N.N.; et al. Optical and electrical studies of arsenic-implanted HgCdTe films grown c with molecular beam epitaxy on GaAs and Si substrates. Infrared Phys. Technol. 2017, 81, 52–58. [Google Scholar] [CrossRef]
- Lo, C.C.; Simmons, S.; Lo Nardo, R.; Weis, C.D.; Tyryshkin, A.M.; Meijer, J.; Rogalla, D.; Lyon, S.A.; Bokor, J.; Schenkel, T.; et al. Stark shift and field ionization of arsenic donors in Si-28-silicon-on-insulator structures. Appl. Phys. Lett. 2014, 104, 193502. [Google Scholar] [CrossRef]
- Feng, P.; Zhang, J.Y.; Li, Q.H.; Wang, T.H. Individual beta-Ga2O3 nanowires as solar-blind photodetectors. Appl. Phys. Lett. 2006, 88, 153107. [Google Scholar] [CrossRef]
- Han, W.Q.; Kohler-Redlich, P.; Ernst, F.; Ruhle, M. Growth and microstructure of Ga2O3 nanorods. Sol. State Commun. 2000, 115, 527–529. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, X.L.; Qiao, Z.Y.; He, M.; Li, H. Large-scale synthesis of single-crystalline beta-Ga2O3 nanoribbons, nanosheets and nanowires. J. Phys. Condens. Matter 2001, 13, L937–L941. [Google Scholar] [CrossRef]
- Liang, C.H.; Meng, G.W.; Wang, G.Z.; Wang, Y.W.; Zhang, L.D.; Zhang, S.Y. Catalytic synthesis and photoluminescence of beta-Ga2O3 nanowires. Appl. Phys. Lett. 2001, 78, 3202–3204. [Google Scholar] [CrossRef]
- He, T.; Zhao, Y.K.; Zhang, X.D.; Lin, W.K.; Fu, K.; Sun, C.; Shi, F.F.; Ding, X.Y.; Yu, G.H.; Zhang, K.; et al. Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction. Nanophotonics 2018, 7, 1557–1562. [Google Scholar] [CrossRef]
- Chengyu, H.; Xizhang, W.; Qiang, W.; Zheng, H.; Yanwen, M.; Jijiang, F.; Yi, C. Phase-equilibrium-dominated vapor-liquid-solid growth mechanism. J. Am. Chem. Soc. 2010, 132, 4843–4847. [Google Scholar]
- Sutter, E.; Sutter, P. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires. Nano Lett. 2008, 8, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cai, J.; Wu, Q.; Wang, X.; Yang, L.; He, C.; Hu, Z. Phase-equilibrium-dominated vapor-liquid-solid mechanism: Further evidence. Sci. China Mater. 2016, 59, 20–27. [Google Scholar] [CrossRef]
- Engler, N.; Leipner, H.S.; Scholz, R.F.; Schreiber, J.; Werner, P. Interaction of Copper and Sulfur with Dislocations in GaAs. In Solid State Phenomena; Trans Tech Publications: Zurich-Uetikon, Switzerland, 2001; Volume 78–79, pp. 331–340. [Google Scholar]
- Hultgren, R.; Desai, P.J.; Hawkins, D.T.; Gleiser, M.; Kelley, K.K. Selected Values of the Thermodynamic Properties of Binary Alloys; American Society for Metals: Berkeley, CA, USA, 1973. [Google Scholar]
- Hansen, M. Constitution of Binary Alloys; McGraw-Hill Book Company: New York, NY, USA, 1958. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, Y.; Gong, S.; Zhou, X.; Yang, Z.; Yang, J.; Han, N.; Chen, Y. Growth of Ga2O3 Nanowires via Cu-As-Ga Ternary Phase Diagram. Crystals 2019, 9, 155. https://doi.org/10.3390/cryst9030155
Wang H, Wang Y, Gong S, Zhou X, Yang Z, Yang J, Han N, Chen Y. Growth of Ga2O3 Nanowires via Cu-As-Ga Ternary Phase Diagram. Crystals. 2019; 9(3):155. https://doi.org/10.3390/cryst9030155
Chicago/Turabian StyleWang, Hang, Ying Wang, Shuyan Gong, Xinyuan Zhou, Zaixing Yang, Jun Yang, Ning Han, and Yunfa Chen. 2019. "Growth of Ga2O3 Nanowires via Cu-As-Ga Ternary Phase Diagram" Crystals 9, no. 3: 155. https://doi.org/10.3390/cryst9030155
APA StyleWang, H., Wang, Y., Gong, S., Zhou, X., Yang, Z., Yang, J., Han, N., & Chen, Y. (2019). Growth of Ga2O3 Nanowires via Cu-As-Ga Ternary Phase Diagram. Crystals, 9(3), 155. https://doi.org/10.3390/cryst9030155