Experimental Conditions for the Stabilization of the Lyotropic Biaxial Nematic Mesophase
Abstract
:1. Introduction
2. Background
3. Recent Experimental Studies on the Stabilization of the Lyotropic Biaxial Nematic Phase
3.1. Effects of Alkyl-Chain Lengths of Surfactant and Cosurfactant
3.2. Effect of Interactions between Head Groups and Ions of Electrolytes
3.3. Effect of Localization of Weak Electrolytes at Micelle’s Surface
4. Conclusions
- Considering the relative alkyl chain length of both surfactant (m) and alcohol (n), the higher (smaller) the value of the m (n), when compared with the value of n (m), the larger the phase domains of the ND and NB (NC) [11,15]. Indeed, this situation is a result of the molecular segregation of the surfactant and alcohol molecules in the micelles. Remember that according to the IBM model proposed for the stabilization of three lyotropic nematic phases, micelles are assumed to have an orthorhombic symmetry and there exist two main parts in the micelles: the flattest part in the plane perpendicular to the surfactant long molecular axis (A’‒B’ plane in Figure 4a) and the curved part at the rims of the micelles. Our results [11,15] indicated that there is a possibility that more alcohol molecules tend to be located in the curved parts of the micelle when the value of n gets bigger. Consequently, if we have a lyotropic mixture with an alcohol as a cosurfactant exhibiting just ND (NC), and one wants to stabilize the NB phase, we have to change the alcohol by another with shorter (longer) alkyl chain length with respect to that of the main surfactant.
- In the case of the specific interactions between head groups of the surfactants and the counterions/ions of strong electrolytes, in terms of their kosmotropic and chaotropic characters, choosing the surfactant and the electrolyte with slightly opposite (strongly same) character may help to stabilize a lyotropic mixture of the NB (ND) phase. Strongly opposite characters of both ionic species, head groups and the ions present in the mixture, stabilizes the NC phase [12,14].
- The researchers have been using, in general, KL/DeOH/water mixtures to prepare lyotropic mixtures presenting the biaxial nematic phase. However, sometimes the reproducible results could not be obtained. As known, the purity of the KL is very important to obtain the reproducible experimental results. In early studies, the researchers reported in the synthesis of the KL molecule “KL was synthesized by neutralization of lauric acid with KOH”. Here, the term “neutralization” does not include the control of the pH. However, Berejnov et al. showed that the neutralization of all lauric acid to give KL is a crucial point to have reproducible results for any mixture of the surfactant KL [95]. To do so, the reaction pH is kept at ~10.8. Otherwise, if the pH is less than 10.8, some amount of lauric acid may remain in the solution without neutralizing, and then excess of lauric acid and DeOH presence in the lyotropic mixture may cause the esterification of lauric acid. Melnik and Saupe proposed a slow esterification reaction between the alcohol and KL; however, most probably this reaction occurs between the alcohol and lauric acid, instead of the soap [81]. Thus, we can say that the experimentalists have to consider the purity of the KL to have chemically stable lyotropic mixtures.
- check the purities of the surfactant and other ingredients of the lyotropic mixture,
- consider the relative alkyl chain lengths of both surfactant and alcohol molecules,
- choose the surfactant head groups and counterions/ions of electrolytes with oppositely kosmotrope or chaotrope characters.
Funding
Conflicts of Interest
References
- Yu, L.J.; Saupe, A. Observation of a Biaxial Nematic Phase in Potassium Laurate-1-Decanol-Water Mixtures. Phys. Rev. Lett. 1980, 45, 1000–1003. [Google Scholar] [CrossRef]
- Neto, A.M.F.; Salinas, S.R.A. The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties, 1st ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Kim, Y.K.; Senyuk, B.; Shin, S.T.; Kohlmeier, A.; Mehl, G.H.; Lavrentovich, O.D. Surface alignment, anchoring transitions, optical properties, and topological defects in the thermotropic nematic phase of organo-siloxane tetrapodes. Soft Matter 2014, 10, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Cukrov, G.; Vita, F.; Scharrer, E.; Samulski, E.T.; Francescangeli, O.; Lavrentovich, O.D. Search for Microscopic and Macroscopic Biaxiality in the Cybotactic Nematic Phase of New Oxadiazole Bent-Core Mesogens. Phys. Rev. E 2016, 93, 062701. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, L.; Kabir, E.; Rahman, M. External Magnetic Field-Dependent Tricritical Points of Uniaxial-To-Biaxial Nematic Transition. Phase Transit. 2016, 89, 193–201. [Google Scholar] [CrossRef]
- Luckhurst, G.R.; Sluckin, T.J. Biaxial Nematic Liquid Crystals, Theory, Simulation, and Experiment, 1st ed.; Wiley: Chichester, UK, 2015. [Google Scholar]
- Bartolino, R.; Chiaranza, T.; Meuti, M.; Compagnoni, R. Uniaxial and Biaxial Lyotropic Nematic Liquid Crystals. Phys. Rev. A 1982, 26, 1116–1119. [Google Scholar] [CrossRef]
- Galerne, Y.; Liébert, L. Zigzag Disclinations in Biaxial Nematic Liquid Crystals. Phys. Rev. Lett. 1985, 55, 2449–2451. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.A.; Liebert, L.; Neto, A.M.F. A New Soap/Detergent/Water Lyotropic Liquid Crystal with a Biaxial Nematic Phase. Liq. Cryst. 1989, 5, 1669–1675. [Google Scholar] [CrossRef]
- Akpinar, E.; Reis, D.; Neto, A.M.F. Lyotropic Mixture Made of Potassium Laurate/1-Undecanol/K2SO4/Water Presenting High Birefringences and Large Biaxial Nematic Phase Domain: A Laser Conoscopy Study. Eur. Phys. J. E Soft Matter Biol. Phys. 2012, 35, 50. [Google Scholar] [CrossRef]
- Akpinar, E.; Reis, D.; Neto, A.M.F. Effect of Alkyl Chain Length of Alcohols on Nematic Uniaxial-to-Biaxial Phase Transitions in a Potassium Laurate/Alcohol/K2SO4/Water Lyotropic Mixture. Liq. Cryst. 2012, 39, 881–888. [Google Scholar] [CrossRef]
- Akpinar, E.; Reis, D.; Neto, A.M.F. Effect of Hofmeister Anions on the Existence of the Biaxial Nematic Phase in Lyotropic Mixtures of Dodecyltrimethylammonium Bromide/Sodium Salt/1-Dodecanol/Water. Liq. Cryst. 2015, 42, 973–981. [Google Scholar] [CrossRef]
- Akpinar, E.; Otluoglu, K.; Turkmen, M.; Canioz, C.; Reis, D.; Neto, A.M.F. Effect of the Presence of Strong and Weak Electrolytes on the Existence of Uniaxial and Biaxial Nematic Phases in Lyotropic Mixtures. Liq. Cryst. 2016, 43, 1693–1708. [Google Scholar] [CrossRef]
- Akpinar, E.; Turkmen, M.; Canioz, C.; Neto, A.M.F. Role of Kosmotrope-Chaotrope Interactions at Micelle Surfaces on the Stabilization of Lyotropic Nematic Phases. Eur. Phys. J. E 2016, 39, 107. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, E.; Canioz, C.; Turkmen, M.; Reis, D.; Neto, A.M.F. Effect of the Surfactant Alkyl Chain Length on the Stabilization of Lyotropic Nematic Phases. Liq. Cryst. 2018, 45, 219–229. [Google Scholar] [CrossRef]
- Freiser, M.J. Ordered States of a Nematic Liquid. Phys. Rev. Lett. 1970, 24, 1041–1043. [Google Scholar] [CrossRef]
- Shih, C.S.; Alben, R. Lattice model for biaxial liquid crystals. J. Chem. Phys. 1972, 57, 3055–3061. [Google Scholar] [CrossRef]
- Alben, R. Liquid crystal phase transitions in mixtures of rodlike and platelike molecules. J. Chem. Phys. 1973, 59, 4299–4304. [Google Scholar] [CrossRef]
- Rabin, Y.; McMullen, W.E.; Gelbart, W.M. Phase Diagram Behaviors for Rod/Plate Liquid Crystal Mixtures. Mol. Cryst. Liq. Cryst. 1982, 89, 67–76. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Deutch, J.M. Biaxial Nematic Phase, Multiphase Critical Point, and Reentry Transition in Binary Liquid Crystal Mixtures. J. Chem. Phys. 1984, 80, 2151–2162. [Google Scholar] [CrossRef]
- Stroobants, A.; Lekkerkerker, H.N.W. Liquid Crystal Phase Transitions in a Solution of Rodlike and Disklike Particles. J. Phys. Chem. 1984, 88, 3669–3674. [Google Scholar] [CrossRef]
- Muhoray, P.P.; Bruyn, J.R.; Dunmur, D.A. Phase Behavior of Binary Nematic Liquid Crystal Mixtures. J. Chem. Phys. 1985, 82, 5294–5295. [Google Scholar] [CrossRef]
- Kooij, F.M.; Lekkerkerker, H. Liquid-Crystal Phases Formed in Mixed Suspensions of Rod- and Platelike Colloids. Langmuir 2000, 16, 10144–10149. [Google Scholar] [CrossRef] [Green Version]
- Lawson, K.D.; Flautt, T.J. Magnetically Oriented Lyotropic Liquid Crystalline Phases. J. Am. Chem. Soc. 1967, 89, 5489. [Google Scholar] [CrossRef]
- Radley, K.; Reeves, L.W. Studies of Ternary Nematic Phases by Nuclear Magnetic Resonance. Alkali Metal Decyl Sulfates/Decanol/D2O. Can. J. Chem. 1975, 53, 2998–3004. [Google Scholar] [CrossRef]
- Radley, K.; Reeves, L.W. Effect of counterion substitution on the type and nature of nematic lyotropic phases from nuclear magnetic resonance studies. J. Phys. Chem. 1976, 80, 174–182. [Google Scholar] [CrossRef]
- Forrest, B.J.; Reeves, L.W.; Robinson, C.J. Transition in the sign of the diamagnetic anisotropy of a lyotropic mesophase without a phase change. Type O disk micelle systems. J. Phys. Chem. 1981, 85, 3244–3247. [Google Scholar]
- Charvolin, J.; Levelut, A.M.; Samulski, E.T. Lyotropic nematics: Molecular aggregation and susceptibilities. J. Phys. Lett. 1979, 40, 587–592. [Google Scholar] [CrossRef]
- Radley, K.; Saupe, A. The Structure of Lyotropic Nematic Decylammoniumchloride and Bromide Systems by PMR of Monomethyltin Complexes and by Microscopic Studies. Mol. Cryst. Liq. Cryst. 1978, 44, 227–235. [Google Scholar] [CrossRef]
- Amaral, L.Q.; Pimentel, C.A.; Tavares, M.R.; Vanin, J.A. Study of a Magnetically Oriented Lyotropic Mesophase. J. Chem. Phys. 1979, 71, 2940–2945. [Google Scholar] [CrossRef]
- Amaral, L.Q.; Tavares, M.R. On the Possible Formation of Macromicelles in a Lyomesophase. Mol. Cryst. Liq. Cryst. Lett. 1980, 56, 203–208. [Google Scholar] [CrossRef]
- Yu, L.J.; Saupe, A. Liquid Crystalline Phases of the Sodium Decylsulfate/Decanol/Water System. Nematic-Nematic and Cholesteric-Cholesteric Phase Transitions. J. Am. Chem. Soc. 1980, 102, 4879–4883. [Google Scholar] [CrossRef]
- Freiser, M.J. Successive Transitions in a Nematic Liquid. Mol. Cryst. Liq. Cryst. 1971, 14, 165–182. [Google Scholar] [CrossRef]
- Henriques, E.F.; Henriques, V.B. Biaxial Phases in Polydisperse Mean-Field Model Solution of Uniaxial Micelles. J. Chem. Phys. 1997, 107, 8036–8040. [Google Scholar] [CrossRef]
- Severing, K.; Saalwaachter, K. Phase Biaxiality in Nematic Liquid Crystals in: Thermotropic Liquid Crystals: Recent Advances; Springer: Dordrecht, The Netherlands, 2007; Chapter 5; pp. 141–170. [Google Scholar]
- Van den Pol, E.; Petukhov, A.V.; Thies-Weesie, D.M.; Byelov, D.V.; Vroege, G.J. Experimental Realization of Biaxial Liquid Crystal Phases in Colloidal Dispersions of Boardlike Particles. Phys. Rev. Lett. 2009, 103, 258301. [Google Scholar] [CrossRef] [PubMed]
- Sauerwein, R.A.; Oliveira, M.J. Lattice Model for Biaxial and Uniaxial Liquid Crystals. J. Chem. Phys. 2016, 144, 194904. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guan, R.; Dong, X.; Dong, Y. Molecular Properties of a Bent-Core Nematic Liquid Crystal A131 by Multi-Level Theory Simulations. Mol. Simul. 2018, 44, 1539–1543. [Google Scholar] [CrossRef]
- Taylor, T.R.; Fergason, J.L.; Arora, S.L. Biaxial Liquid Crystals. Phys. Rev. Lett. 1970, 24, 359–362. [Google Scholar] [CrossRef]
- Neto, A.M.F.; Liebet, L.; Galerne, Y. Temperature and Concentration Range of the Biaxial Nematic Lyomesophase in the Mixture Potassium Laurate/1-Decanol/D2O. J. Phys. Chem. 1985, 89, 3737–3739. [Google Scholar] [CrossRef]
- Galerne, Y.; Neto, A.MF.; Liebert, L. Microscopic Structure of the Uniaxial and Biaxial Lyotropic Nematics. J. Chem. Phys. 1987, 87, 1851–1856. [Google Scholar] [CrossRef]
- Madsen, L.A.; Dingemans, T.J.; Nakata, M.; Samulski, E.T. Thermotropic Biaxial Nematic Liquid Crystals. Phys. Rev. Lett. 2004, 92, 145505. [Google Scholar] [CrossRef]
- Luckhurst, G.R. Biaxial Nematic Liquid Crystals: Fact or Fiction? Thin Solid Film. 2001, 393, 40–52. [Google Scholar] [CrossRef]
- Acharya, B.R.; Primak, A.; Kumar, S. Biaxial Nematic Phase in Bent-Core Thermotropic Mesogens. Phys. Rev. Lett. 2004, 92, 145506. [Google Scholar] [CrossRef]
- Luckhurst, G.R. Liquid Crystals—A Missing Phase Found at Last? Nature 2004, 430, 413–414. [Google Scholar] [CrossRef]
- Galerne, Y. Comment on Thermotropic Biaxial Nematic Liquid Crystals. Phys. Rev. Lett. 2006, 96, 219803. [Google Scholar] [CrossRef]
- Madsen, L.A.; Dingemans, T.J.; Nakata, M.; Samulski, E.T. A Reply to the Comment by Yves Galerne. Phys. Rev. Lett. 2006, 96, 219804. [Google Scholar] [CrossRef]
- Straley, J.P. Ordered Phases of a Liquid of Biaxial Particles. Phys. Rev. A 1974, 10, 1881–1887. [Google Scholar] [CrossRef]
- Biscarini, F.; Chiccoli, C.; Pasini, P.; Semeria, F.; Zannoni, C. Phase Diagram and Orientational Order in a Biaxial Lattice Model: A Monte Carlo Study. Phys. Rev. Lett. 1995, 75, 1803–1806. [Google Scholar] [CrossRef]
- Camp, P.J.; Allen, M.P. Phase Diagram of the Hard Biaxial Ellipsoid Fluid. J. Chem. Phys. 1997, 106, 6681. [Google Scholar] [CrossRef]
- Taylor, M.P.; Herzfeld, J. Nematic and Smectic Order in a Fluid of Biaxial Hard Particles. Phys. Rev. A 1991, 44, 3742–3751. [Google Scholar] [CrossRef]
- Vanakaras, A.G.; Bates, M.A.; Photinos, D.J. Theory and Simulation of Biaxial Nematic and Orthogonal Smectic Phases Formed by Mixtures of Boardlike Molecules. Phys. Chem. Chem. Phys. 2003, 5, 3700–3706. [Google Scholar] [CrossRef]
- Berardi, R.; Muccioli, L.; Orlandi, S.; Ricci, M.; Zannoni, C. Computer Simulations of Biaxial Nematics. J. Phys. Condens Matter 2008, 20, 463101. [Google Scholar] [CrossRef]
- Hashim, R.; Luckhurst, G.R.; Romano, S. Computer Simulation Studies of Anisotropic Systems. Mol. Phys. 1984, 53, 1535. [Google Scholar] [CrossRef]
- Hashim, R.; Luckhurst, G.R.; Prata, F.; Romano, S. Computer Simulation Studies of Anisotropic Systems. XXII. An Equimolar Mixture of Rods and Discs: A Biaxial Nematic? Liq. Cryst. 1993, 15, 283–309. [Google Scholar] [CrossRef]
- Pratibha, R.; Madhusudana, N.V. Evidence for two Coexisting Nematic Phases in Mixtures of Rod-Like and Disc-Like Nematogens. Mol. Cryst Liq. Cryst. 1985, 1, 111–116. [Google Scholar]
- Pratibha, R.; Madhusudana, N.V. On the Occurrence of Point and Ring Defects in the Nematic-Nematic Coexistence Range of a Binary Mixture of Rod-like and Disc-like Mesogens, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics. Mol. Cryst. Liq. Cryst. 1990, 178, 167–178. [Google Scholar]
- Neto, A.M.F.; Galerne, Y. Yotropic Systems. In Biaxial Nematic Liquid Crystals, Theory, Simulation, and Experiment; Wiley: Chichester, UK, 2015; Chapter 11; pp. 285–304. [Google Scholar]
- Martínez-Ratón, Y.; Gonzalez-Pinto, M.; Velasco, E. Biaxial Nematic Phase Stability and Demixing Behaviour in Monolayers of Rod-Plate Mixtures. Phys. Chem. Chem. Phys. 2016, 18, 24569. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.R.; Muhoray, P.P.; Bergersen, B.; Dunmur, D.A. Stability of a Biaxial Phase in a Binary Mixture of Nematic Liquid Crystals. Phys. Rev. A 1985, 32, 3752. [Google Scholar] [CrossRef]
- Martínez-Ratón, Y.; Cuesta, J.A. Enhancement by Polydispersity of the Biaxial Nematic Phase in a Mixture of Hard Rods and Plates. Phys. Rev. Lett. 2002, 89, 185701. [Google Scholar] [CrossRef]
- Vanakaras, A.G.; Photinos, D.J. Theory of Biaxial Nematic Ordering in Rod-Disc Mixtures Revisited. Mol. Cryst. Liq. Cryst. 1997, 299, 65–71. [Google Scholar] [CrossRef]
- Vanakaras, A.G.; McGrother, S.C.; Jackson, G.; Photinos, D.J. Hydrogen-Bonding and Phase Biaxiality in Nematic Rod-Plate Mixtures. Mol. Cryst. Liq. Cryst. 1998, 323, 199–209. [Google Scholar] [CrossRef]
- Varga, S.; Galindo, A.; Jackson, G. Global Fluid Phase Behavior in Binary Mixtures of Rodlike and Platelike Molecules. J. Chem. Phys. 2002, 117, 7207. [Google Scholar] [CrossRef]
- Varga, S.; Galindo, A.; Jackson, G. Phase Behavior of Symmetric Rod–Plate Mixtures Revisited: Biaxiality Versus Demixing. J. Chem. Phys. 2002, 117, 10412. [Google Scholar] [CrossRef]
- Varga, S.; Galindo, A.; Jackson, G. Ordering Transitions, Biaxiality, and Demixing in The Symmetric Binary Mixture of Rod and Plate Molecules Described with the Onsager Theory. Phys. Rev. E 2002, 66, 011707. [Google Scholar] [CrossRef]
- Galindo, A.; Haslam, A.J.; Varga, S.; Jackson, G.; Vanakaras, A.G.; Photinos, D.J.; Dunmur, D.A. The Phase Behavior of a Binary Mixture of Rodlike and Disclike Mesogens: Monte Carlo Simulation, Theory, and Experiment. J. Chem. Phys. 2003, 119, 5216–5225. [Google Scholar] [CrossRef]
- Kooij, F.M.; Lekkerkerker, H.N.W. Liquid-Crystalline Phase Behavior of a Colloidal Rod-Plate Mixture. Phys. Rev. Lett. 2000, 84, 781. [Google Scholar] [CrossRef]
- Kooij, F.M.; Vogel, M.; Lekkerkerker, H.N.W. Phase Behavior of a Mixture of Platelike Colloids and Nonadsorbing Polymer. Phys. Rev. E 2000, 62, 5397. [Google Scholar] [CrossRef]
- Kooij, F.M.; Lekkerkerker, H.N.W. Liquid-Crystal Phase Transitions in Suspensions of Plate-Like Particles. Philos Trans. R Soc. B 2001, 359, 985–995. [Google Scholar] [CrossRef]
- Kooij, F.M.; Beek, D.; Lekkerkerker, H.N.W. Isotropic−Nematic Phase Separation in Suspensions of Polydisperse Colloidal Platelets. J. Phys. Chem. B 2001, 105, 1696. [Google Scholar] [CrossRef]
- Wensink, H.H.; Vroege, G.J.; Lekkerkerker, H.N.W. Isotropic-Nematic Phase Separation in Asymmetrical Rod-Plate Mixtures. J. Chem. Phys. 2001, 115, 7319. [Google Scholar] [CrossRef]
- Wensink, H.H.; Vroege, G.J.; Lekkerkerker, H.N.W. Biaxial versus uniaxial nematic stability in asymmetric rod-plate mixtures. Phys. Rev. E 2002, 66, 041704. [Google Scholar] [CrossRef] [Green Version]
- Galerne, Y.; Itoua, J.; Liebert, L. Zigzag disclinations in uniaxial nematic liquid crystals. J. Phys. 1988, 49, 681–687. [Google Scholar] [CrossRef]
- Galerne, Y. Biaxial nematics. Mol. Cryst. Liq. Cryst. 1988, 165, 131–149. [Google Scholar] [CrossRef]
- Galerne, Y. Vanishing disclination lines in lyotropic biaxial nematics. Mol. Cryst. Liq. Cryst. 1997, 292, 103–112. [Google Scholar] [CrossRef]
- Santos, M.B.L.; Galerne, Y.; Durand, G. Critical Slowing Down of Biaxiality Fluctuations at the Uniaxial-to-Biaxial Phase Transition in a Lyotropic Disklike Nematic Liquid Crystal. Phys. Rev. Lett. 1984, 53, 787–790. [Google Scholar] [CrossRef]
- Neto, A.M.F.; Galerne, Y.; Levelut, A.M.; Liebert, L. Pseudo-Lamellar Ordering in Uniaxial and Biaxial Lyotropic Nematics-A Synchrotron X-Ray Diffraction Experiment. J. Phys. Lett. 1985, 46, 409–505. [Google Scholar]
- Akpinar, E.; Reis, D.; Neto, A.M.F. Anomalous Behavior in the Crossover Between the Negative and Positive Biaxial Nematic Mesophases in a Lyotropic Liquid Crystal. ChemPhysChem 2014, 15, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Hendrikx, Y.; Charvolin, J.; Rawiso, M. Uniaxial-Biaxial Phase Transition in Lyotropic Nematic Solutions: Local Biaxiality in the Uniaxial Phase. Phys. Rev. B Condens Matter 1986, 33, 3534–3537. [Google Scholar] [CrossRef] [PubMed]
- Melnik, G.; Saupe, A. Microscopic Textures of Micellar Cholesteric Liquid Crystals. Mol. Cryst. Liq. Cryst. 1987, 145, 95–110. [Google Scholar] [CrossRef]
- Vasilevskaya, A.S.; Kitaeva, E.L.; Sonin, A.S. Optically Biaxial Mesophases in Lyotropic Nematics. Russ. J. Phys. Chem. 1990, 64, 599–601. [Google Scholar]
- Ho, C.C.; Hoetz, R.J.; El-Aasser, M.S. A Biaxial Lyotropic Nematic Phase in Dilute Solutions of Sodium Lauryl Sulfate-1-Hexadecanol-Water. Langmuir 1991, 7, 630–635. [Google Scholar] [CrossRef]
- Quist, P.O. First Order Transitions to a Lyotropic Biaxial Nematic. Liq. Cryst. 1995, 18, 623–629. [Google Scholar] [CrossRef]
- Filho, A.M.; Laverde, A.; Fujiwara, F.Y. Observation of Two Biaxial Nematic Mesophases in the Tetradecyltrimethylammonium Bromide/Decanol/Water System. Langmuir 2003, 19, 1127–1132. [Google Scholar] [CrossRef]
- Alben, R. Phase transitions in a fluid of biaxial particles. Phys. Rev. Lett. 1973, 30, 778–781. [Google Scholar] [CrossRef]
- Galerne, Y.; Marcerou, J.P. Temperature Behavior of the Order-Parameter Invariants in the Uniaxial and Biaxial Nematic Phases of a Lyotropic Liquid Crystal. Phys. Rev. Lett. 1983, 51, 2109–2111. [Google Scholar] [CrossRef]
- Akpinar, E.; Reis, D.; Meto, A.M.F. Investigation of the Interaction of Alkali Ions with Surfactant Head Groups for the Formation of Lyotropic Biaxial Nematic Phase via Optical Birefringence Measurements. Proc. Soc. Photo-Opt. Inst. Eng. (SPIE) 2013, 8642, 864203. [Google Scholar]
- Trompette, J.L.; Arurault, L.; Fontorbes, S.; Massot, L. Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates. Electrochim. Acta 2010, 55, 2901–2910. [Google Scholar] [CrossRef] [Green Version]
- Bridges, N.J.; Gutowski, K.E.; Rogers, R.D. Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS). Green Chem. 2007, 9, 77–183. [Google Scholar] [CrossRef]
- Collins, K.D. Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process. Methods 2004, 34, 300–311. [Google Scholar] [CrossRef]
- Collins, K.D.; Neilson, G.W.; Enderby, J.E. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 2007, 128, 95–104. [Google Scholar] [CrossRef]
- Ropers, M.H.; Czichocki, G.; Brezesinski, G. Counterion Effect on the Thermodynamics of Micellization of Alkyl Sulfates. J. Phys. Chem. B 2003, 107, 5281–5288. [Google Scholar] [CrossRef]
- Moriera, L.; Firoozabadi, A. Molecular Thermodynamic Modeling of Specific Ion Effects on Micellization of Ionic Surfactants. Langmuir 2010, 26, 15177–15191. [Google Scholar] [CrossRef]
- Berejnov, V.V.; Cabuil, V.; Perzynski, R.; Raikher, Y.L.; Lysenko, S.N.; Sdobnov, V.N. Lyotropic Nematogenic System Potassium Laurate–1-Decanol–Water: Method of Synthesis and Study of Phase Diagrams. Cryst. Rep. 2000, 45, 541–545. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpinar, E.; Figueiredo Neto, A.M. Experimental Conditions for the Stabilization of the Lyotropic Biaxial Nematic Mesophase. Crystals 2019, 9, 158. https://doi.org/10.3390/cryst9030158
Akpinar E, Figueiredo Neto AM. Experimental Conditions for the Stabilization of the Lyotropic Biaxial Nematic Mesophase. Crystals. 2019; 9(3):158. https://doi.org/10.3390/cryst9030158
Chicago/Turabian StyleAkpinar, Erol, and Antônio Martins Figueiredo Neto. 2019. "Experimental Conditions for the Stabilization of the Lyotropic Biaxial Nematic Mesophase" Crystals 9, no. 3: 158. https://doi.org/10.3390/cryst9030158
APA StyleAkpinar, E., & Figueiredo Neto, A. M. (2019). Experimental Conditions for the Stabilization of the Lyotropic Biaxial Nematic Mesophase. Crystals, 9(3), 158. https://doi.org/10.3390/cryst9030158