Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals
Abstract
:1. Introduction
- generation upon photoexcitation,
- transfer to the surface of the photocatalytic crystal,
- participation in redox reactions taking place at the active surface.
2. Basic Properties of Chosen Metal Oxides
3. Growth and Morphology of Metal Oxide Nanocrystals
- diffusion of monomers to the surface, where they are adsorbed,
- surface reaction,
- byproducts desorption and diffusion into the bulk solution.
- reaction time,
- temperature,
- pressure,
- pH,
- concentration and type of capping agents (ions, surfactants, reducing agents, ligands, etc.).
- solvolysis (hydrolysis or alcoholysis); production of the metal hydroxide solution described as a sol,
- condensation; formation of three-dimensional gels (metal–oxygen–metal interlocked network),
- drying process; depending on the mode of drying conversion to xerogel or aerogel
3.1. TiO2 (Anatase)
3.2. α-Fe2O3 (Hematite)
3.3. Cu2O
3.4. Geometrical Considerations
4. Photocatalytic Activity
- electron e− and hole h+ excitation into the corresponding conduction CB and valence VB bands on particular crystal facets
- transport and separation resulting in accumulation of photogenerated charge carriers on different facets
- adsorption and activation of reactant molecules on facets with a different arrangement of atoms
- charge transfer to different facets where particular molecules are adsorbed
- tunable efficiency of redox reactions.
4.1. TiO2 (Anatase)
4.2. α-Fe2O3 (Hematite)
4.3. Cu2O
5. Chemical Sensing
- large grains:
- intermediate case:
- small grains:
5.1. TiO2 (Anatase)
5.2. α-Fe2O3 (Hematite)
5.3. Cu2O
6. Conclusions and Perspectives.
Author Contributions
Funding
Conflicts of Interest
References
- Yu, J.; Dai, G.; Xiang, Q.; Jaroniec, M. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 2011, 21, 1049–1057. [Google Scholar] [CrossRef]
- Pal, J.; Pal, T. Faceted metal and metal oxide nanoparticles: Design, fabrication and catalysis. Nanoscale 2015, 7, 14159–14190. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Lin, P.H. Shape-controlled synthesis of polyhedral nanocrystals and their facet-dependent properties. Adv. Funct. Mater. 2012, 22, 14–24. [Google Scholar] [CrossRef]
- Huang, M.H.; Rej, S.; Hsu, S.C. Facet-dependent properties of polyhedral nanocrystals. Chem. Commun. 2014, 50, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Wang, L.; Li, Z.; Xiong, Y. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qiao, L.; Xu, H.; Lin, Y.; Shen, Y.; Nan, C. Anisotropy of photocatalytic properties in nanostructured photocatalysts. Soft Nanosci. Lett. 2016, 6, 11–30. [Google Scholar] [CrossRef]
- Kang, D.; Kim, T.W.; Kubota, S.R.; Cardiel, A.C.; Cha, H.G.; Choi, K.S. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 2015, 115, 12839–12887. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, T. An overview: Facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B Chem. 2018, 277, 604–633. [Google Scholar] [CrossRef]
- Liu, C.; Lu, H.; Zhang, J.; Gao, J.; Zhu, G.; Yang, Z.; Yin, F.; Wang, C. Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sens. Actuators B Chem. 2018, 263, 557–567. [Google Scholar] [CrossRef]
- Liu, C.; Lu, H.; Zhang, J.; Yang, Z.; Zhu, G.; Yin, F.; Gao, J.; Chen, C.; Xin, X. Abnormal p-type sensing response of TiO2 nanosheets with exposed {001} facets. J. Alloys Compd. 2017, 705, 112–117. [Google Scholar] [CrossRef]
- Mirzaei, A.; Hashemi, B.; Janghorban, K. α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci. Mater. Electron. 2016, 27, 3109–3144. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, T.; Gou, Z.; Lin, L. Carbon monoxide sensing mechanism of highly oriented TiO2 from first principles. Phys. E Low-Dimens. Syst. Nanostruct. 2012, 44, 1567–1571. [Google Scholar] [CrossRef]
- Li, T.; He, M.; Zeng, W. Polyhedral Cu2O crystal: Morphology evolution from meshed nanocube to solid and gas-sensing performance. J. Alloys Compd. 2017, 712, 50–58. [Google Scholar] [CrossRef]
- Xie, Z.; Han, N.; Li, W.; Deng, Y.; Gong, S.; Wang, Y.; Wu, X.; Li, Y.; Chen, Y. Facet-dependent gas sensing properties of Cu2O crystals. Phys. Status Solidi Appl. Mater. Sci. 2017, 214. [Google Scholar] [CrossRef]
- Liu, C.; Han, X.; Xie, S.; Kuang, Q.; Wang, X.; Jin, M.; Xie, Z.; Zheng, L. Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes. Chem. Asian J. 2013, 8, 282–289. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Jiu, B.B.; Gong, F.L.; Chen, J.L.; Zhang, H.L. Morphology-controllable Cu2O supercrystals: Facile synthesis, facet etching mechanism and comparative photocatalytic H2 production. J. Alloys Compd. 2017, 729, 563–570. [Google Scholar] [CrossRef]
- Kuang, Q.; Wang, X.; Jiang, Z.; Xie, Z.; Zheng, L. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications. Acc. Chem. Res. 2014, 47, 308–318. [Google Scholar] [CrossRef]
- Lin, Z.; Li, L.; Yu, L.; Li, W.; Yang, G. Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters. Phys. Chem. Chem. Phys. 2017, 19, 8356–8362. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, X.; Sun, X.; Peng, Q.; Li, Y. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212. [Google Scholar] [CrossRef]
- Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A.; Ong, K.G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 2006, 17, 398–402. [Google Scholar] [CrossRef]
- Yoshida, R.; Suzuki, Y.; Yoshikawa, S. Syntheses of TiO2 (B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 2005, 178, 2179–2185. [Google Scholar] [CrossRef]
- Suber, L.; Imperatori, P.; Ausanio, G.; Fabbri, F.; Hofmeister, H.; Stazione, M.; Fisiche, I.S. Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J. Phys. Chem. B 2005, 109, 7103–7109. [Google Scholar] [CrossRef]
- Fan, Z.; Wen, X.; Yang, S.; Lu, J.G. Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 2005, 87, 8–11. [Google Scholar] [CrossRef]
- Qiao, L.; Swihart, M.T. Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Adv. Colloid Interface Sci. 2017, 244, 199–266. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef]
- Cuenya, B.R.; Behafarid, F. Nanocatalysis: Size- and shape-dependent chemisorption and catalytic reactivity. Surf. Sci. Rep. 2015, 70, 135–187. [Google Scholar] [CrossRef]
- Shang, Y.; Guo, L. Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing. Adv. Sci. 2015, 2, 1500140(1)–1500140(22). [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal. 2016, 6, 1097–1108. [Google Scholar] [CrossRef]
- Wulff, G. Zur Frage der Geschwindigkeit des Wachs – thums und der Auflosung der Krystallflachen. In Zeitschrift für Kristallographie—Crystalline Materials; Pöttgen, R., Ed.; Oldenbourg Wissenschaftsverlag GmbH: Berlin, Germany, 1895; pp. 449–530. ISSN 2196-7105. [Google Scholar]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 63, 1554091–1554099. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U.D.O. Conduction model of metal oxide gas sensors. J. Electroceram. 2002, 7, 143–167. [Google Scholar] [CrossRef]
- Wang, Y.L.; Li, Y.H.; Wang, X.L.; Hou, Y.; Chen, A.P.; Yang, H.G. Effects of redox mediators on α-Fe2O3 exposed by {012} and {104} facets for photocatalytic water oxidation. Appl. Catal. B Environ. 2017, 206, 216–220. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, R.; Zhou, T.; Lou, Z.; Deng, J.; Zhang, T. P-type octahedral Cu2O particles with exposed {111} facets and superior CO sensing properties. Sens. Actuators B Chem. 2017, 239, 211–217. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, H.; Zhuang, J.; Wang, X. Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg. Chem. 2011, 50, 10143–10151. [Google Scholar] [CrossRef]
- Hellwege, K.H.; Hellwege, A.M.; Landolt, H.; Börnstein, R.; Madelung, O.; Callomon, J.H. Landolt-Bornstein: Numerical data and functional relationships in Science and Technology-new series; Springer: New York, NY, USA, 2015; Volume 1. [Google Scholar]
- Mo, S.-D.; Ching, W.Y. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 2000, 51, 13023–13032. [Google Scholar] [CrossRef]
- Seo, M.H.; Yuasa, M.; Kida, T.; Huh, J.S.; Shimanoe, K.; Yamazoe, N. Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes. Sens. Actuators B Chem. 2009, 137, 513–520. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, X.; Xiao, S.; Zeng, F. Application of TiO2 nanotubes gas sensors in online monitoring of SF6 insulated equipment. Intech Open 2015, 2, 75–122. [Google Scholar] [CrossRef]
- Park, J.A.; Moon, J.; Lee, S.J.; Kim, S.H.; Zyung, T.; Chu, H.Y. Structure and CO gas sensing properties of electrospun TiO2 nanofibers. Mater. Lett. 2010, 64, 255–257. [Google Scholar] [CrossRef]
- Radecka, M.; Jasinski, M.; Klich-Kafel, J.; Rekas, M.; Lyson, B.; Czapla, A.; Lubecka, M.; Sokolowski, M.; Zakrzewska, K.; Heel, A.; et al. TiO2-based nanopowders for gas sensor. Ceram. Mater. 2010, 545–549. [Google Scholar]
- Lyson-Sypien, B.; Czapla, A.; Lubecka, M.; Kusior, E.; Zakrzewska, K.; Radecka, M.; Kusior, A.; Balogh, A.G.; Lauterbach, S.; Kleebe, H.J. Gas sensing properties of TiO2-SnO2 nanomaterials. Sens. Actuators B Chem. 2013, 187, 445–454. [Google Scholar] [CrossRef]
- Li, J.; Yu, Y.; Chen, Q.; Li, J.; Xu, D. Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors. Cryst. Growth Des. 2010, 10, 2111–2115. [Google Scholar] [CrossRef]
- Li, C.; Koenigsmann, C.; Ding, W.; Rudshteyn, B.; Yang, K.R.; Regan, K.P.; Konezny, S.J.; Batista, V.S.; Brudvig, G.W.; Schmuttenmaer, C.A.; et al. Facet-dependent photoelectrochemical performance of TiO2 nanostructures: An experimental and computational study. J. Am. Chem. Soc. 2015, 137, 1520–1529. [Google Scholar] [CrossRef]
- Xu, H.; Reunchan, P.; Ouyang, S.; Tong, H.; Umezawa, N.; Kako, T.; Ye, J. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution. Chem. Mater. 2013, 25, 405–411. [Google Scholar] [CrossRef]
- Pan, J.; Liu, G.; Lu, G.Q.; Cheng, H.M. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew. Chem. Int. Ed. 2011, 50, 2133–2137. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, Y.; Meng, X.; Li, Y.; Zhao, J. Structural evolution and characteristics of the phase transformation between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 2013, 15, 8166–8172. [Google Scholar] [CrossRef]
- Gich, M.; Roig, A.; Taboada, E.; Molins, E.; Bonafos, C.; Snoeck, E. Stabilization of metastable phases in spatially restricted fields: The case of the Fe2O3 polymorphs. Faraday Discuss. 2007, 136, 345–354. [Google Scholar] [CrossRef]
- Zoolfakar, A.S.; Rani, R.A.; Morfa, A.J.; O’Mullane, A.P.; Kalantar-Zadeh, K. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2014, 2, 5247–5270. [Google Scholar] [CrossRef]
- Madelung, O. Semiconductors: Data Handbook, 3rd ed.; Springer: Berlin/Heidelberg, Germany; GmbH: Berlin, Germany, 2004; ISBN 9783642623325. [Google Scholar]
- Sanson, A.; Kantor, I.; Cerantola, V.; Irifune, T.; Carnera, A.; Pascarelli, S. Local structure and spin transition in Fe2O3 hematite at high pressure. Phys. Rev. B 2016, 94, 2–8. [Google Scholar] [CrossRef]
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef]
- Chemical Book. Available online: https://www.chemicalbook.com/ChemicalProductProperty_US_CB6115645.aspx (accessed on 30 November 2018).
- Clark, R.J.H. The chemistry of titanium and vanadium. An Introduction to the chemistry of the early transition elements.; Elsevier Pub. Co.: Amsterdam, The Netherlands, 1968; pp. 266–277. ISBN 978-0444406798. [Google Scholar]
- Polyanskiy, M.N. Cu2O Refractive Index. Available online: https://refractiveindex.info/?shelf=main&book=Cu2O&page=Querry (accessed on 29 November 2018).
- Polyanskiy, M.M. Fe2O3 refractive index. Available online: https://refractiveindex.info/?shelf=main&book=Fe2O3&page=Querry-o (accessed on 28 November 2018).
- Martin, G.J.; Cutting, R.S.; Vaughan, D.J.; Warren, M.C. Bulk and key surface structures of hematite, magnetite, and goethite: A density functional theory study. Am. Miner. 2009, 94, 1341–1350. [Google Scholar] [CrossRef]
- Guo, H.; Barnard, A.S. Thermodynamic modelling of nanomorphologies of hematite and goethite. J. Mater. Chem. 2011, 21, 11566–11577. [Google Scholar] [CrossRef]
- Mackrodt, W.C. Atomistic simulation of oxide surfaces. Phys. Chem. Miner. 1988, 15, 228–237. [Google Scholar] [CrossRef]
- Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 75, 1–9. [Google Scholar] [CrossRef]
- Cornell, R.M. ; The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses; Wiley-VCH GmbH & Co KGaA: Weinheim, Germany, 2003; pp. 59–94. ISBN 9783527602094. [Google Scholar]
- Zhu, J.; Ng, K.Y.S.; Deng, D. Micro single crystals of hematite with nearly 100% exposed {104} facets: Preferred etching and lithium storage. Cryst. Growth Des. 2014, 14, 2811–2817. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, B.; Wang, Z.; Guo, M.; Qin, X.; Zhang, X.; Wang, P.; Dai, Y. Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J. Phys. Chem. C 2009, 113, 14448–14453. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, C. Humidity sensors: A review of materials and mechanisms. Sens. Lett. 2005, 3, 274–295. [Google Scholar] [CrossRef]
- Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 2017, 7, 3007–3015. [Google Scholar] [CrossRef]
- Chirita, M.; Grozescu, I. Fe2O3—Nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem. Bull. Politeh. Univ. Timsisoara 2009, 54, 1–8. [Google Scholar]
- Yan, W.; Jianliang, C.; Shurong, W.; Xianzhi, G.; Jun, Z.; Huijuan, X.; Shoumin, Z.; Shihua, W. Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J. Phys. Chem. C 2008, 112, 17804. [Google Scholar] [CrossRef]
- Sun, Z.; Yuan, H.; Liu, Z.; Han, B.; Zhang, X. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 2005, 17, 2993–2997. [Google Scholar] [CrossRef]
- Zheng, Z.; Liao, L.; Yan, B.; Zhang, J.X.; Gong, H.; Shen, Z.X.; Yu, T. Enhanced field emission from argon plasma-treated ultra-sharp α-Fe2O3 nanoflakes. Nanoscale Res. Lett. 2009, 4, 1115–1119. [Google Scholar] [CrossRef]
- Huang, J.; Yang, M.; Gu, C.; Zhai, M.; Sun, Y.; Liu, J. Hematite solid and hollow spindles: Selective synthesis and application in gas sensor and photocatalysis. Mater. Res. Bull. 2011, 46, 1211–1218. [Google Scholar] [CrossRef]
- Goniakowski, J.; Finocchi, F.; Noguera, C. Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 2008, 71, 1–55. [Google Scholar] [CrossRef]
- Lu, J.; Peng, Q.; Wang, Z.; Nan, C.; Li, L.; Li, Y. Hematite nanodiscs exposing (001) facets: Synthesis, formation mechanism and application for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5232–5237. [Google Scholar] [CrossRef]
- Yi, N.; Flytzani-Stephanopoulos, M. Catalysis by Materials with Well-Defined Structures; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780128012178. [Google Scholar]
- Sun, S.; Zhang, X.; Yang, Q.; Liang, S.; Zhang, X.; Yang, Z. Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater. Sci. 2018, 96, 111–173. [Google Scholar] [CrossRef]
- Wan, X.; Wang, J.; Zhu, L.; Tang, J. Gas sensing properties of Cu2O and its particle size and morphology-dependent gas-detection sensitivity. J. Mater. Chem. A 2014, 2, 13641–13647. [Google Scholar] [CrossRef]
- Cao, S.; Chen, H.; Han, T.; Zhao, C.; Peng, L. Rose-like Cu2O nanoflowers via hydrothermal synthesis and their gas sensing properties. Mater. Lett. 2016, 180, 135–139. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, Z.; Wu, Q.; Guo, D.; Xu, Y.; Guo, L. Cu2O-CuO composite microframes with well-designed micro/nano structures fabricated via controllable etching of Cu2O microcubes for CO gas sensors. CrystEngComm 2013, 15, 7462–7467. [Google Scholar] [CrossRef]
- Şişman, O.; Kilinç, N.; Öztürk, Z.Z. H2 sensing properties of Cu2O nanowires on glass substrate. Procedia Eng. 2015, 120, 1170–1174. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, R.; Zhou, T.; Lou, Z.; Deng, J.; Zhang, T. Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene (C6H6) and nitrogen dioxide (NO2) detection. Sens. Actuators B Chem. 2016, 223, 311–317. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, P.; Chen, L.; Wang, X.; Li, J.; Shi, C.; Wang, D. Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Thanh, N.T.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, S.; Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016, 8, 1237–1259. [Google Scholar] [CrossRef]
- Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, MA, USA, 2001; ISBN 0 7506 4833 3. [Google Scholar]
- Wang, F.; Richards, V.N.; Shields, S.P.; Buhro, W.E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 2014, 26, 5–21. [Google Scholar] [CrossRef]
- Chu, D.B.K.; Owen, J.S.; Peters, B. Nucleation and growth kinetics from LaMer burst data. J. Phys. Chem. A 2017, 121, 7511–7517. [Google Scholar] [CrossRef]
- Huang, M.H.; Chiu, C. Achieving polyhedral nanocrystal growth with systematic shape control. J. Mater. Chem. A 2013, 1, 8081–8092. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Wei, X.; Chen, J.-S. Carbon-Coated V2O5 Nanocrystals as High Performance Cathode Material for Lithium Ion Batteries. Chem. Mater. 2011, 23, 5290–5292. [Google Scholar] [CrossRef]
- Yu, Y.; Yin, X.; Kvit, A.; Wang, X. Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. Nano Lett. 2014, 14, 2528–2535. [Google Scholar] [CrossRef]
- Liu, R.; Bohannan, E.W.; Switzer, J.A.; Oba, F.; Ernst, F. Shape control in epitaxial electrodeposition: Cu2O on InP (001). Chem. Mater. 2003, 83, 1944–1946. [Google Scholar] [CrossRef]
- Zhu, H.; Du, M.; Yu, D.; Wang, Y.; Wang, L.; Zou, M.; Zhang, M.; Fu, Y. A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu2O-Au hierarchical heterostructures with a series of morphological evolutions. J. Mater. Chem. A 2013, 1, 919–929. [Google Scholar] [CrossRef]
- Pang, H.; Gao, F.; Lu, Q. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 2009, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, W.; Cheng, C.; Zhang, T.; Ge, M.; Sun, Y.; Dai, N. Fabrication of mesoporous SnO2 nanocubes with superior ethanol gas sensing property. Mater. Res. Bull. 2017, 89, 267–272. [Google Scholar] [CrossRef]
- Guo, W.; Sun, W.; Lv, L.P.; Kong, S.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 2017, 11, 4198–4205. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ding, D.; Zhu, M.; Meng, W.; Huang, Y.; Geng, F.; Li, J.; Lin, J.; Tang, C.; Lei, Z.; et al. Facile synthesis of α-Fe2O3 nanodisk with superior photocatalytic performance and mechanism insight. Sci. Technol. Adv. Mater. 2015, 16, 14801(1)–14801(12). [Google Scholar] [CrossRef]
- Huang, J.; Wang, L.; Gu, C.; Wang, Z.; Sun, Y.; Shim, J.J. Preparation of porous SnO2 microcubes and their enhanced gas-sensing property. Sens. Actuators B Chem. 2015, 207, 782–790. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Zhu, W. Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B 2006, 110, 13829–13834. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Shang, L.; Bian, T.; Zhou, C.; Zhang, D.; Yu, H.; Xu, H.; Shi, Z.; Zhang, T.; Wu, L.Z.; Tung, C.H. Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm 2012, 14, 4431–4436. [Google Scholar] [CrossRef]
- Roy, N.; Park, Y.; Sohn, Y.; Leung, K.T.; Pradhan, D. Green synthesis of anatase TiO2 nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity. ACS Appl. Mater. Interfaces 2014, 6, 16498–16507. [Google Scholar] [CrossRef]
- Wang, L.; Zang, L.; Zhao, J.; Wang, C. Green synthesis of shape-defined anatase TiO2 nanocrystals wholly exposed with {001} and {100} facets. Chem. Commun. 2012, 48, 11736–11738. [Google Scholar] [CrossRef]
- Li, J.; Cao, K.; Li, Q.; Xu, D. Tetragonal faceted-nanorods of anatase TiO2 with a large percentage of active {100} facets and their hierarchical structure. CrystEngComm 2012, 14, 83–85. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, E.Y.; Li, W.D. Synthesis of TiO2 nanocubes induced by cellulose nanocrystal (CNC) at low temperature. Mater. Lett. 2007, 61, 5050–5052. [Google Scholar] [CrossRef]
- Menzel, R.; Duerrbeck, A.; Liberti, E.; Yau, H.C.; McComb, D.; Shaffer, M.S.P. Determining the morphology and photocatalytic activity of two-dimensional anatase nanoplatelets using reagent stoichiometry. Chem. Mater. 2013, 25, 2137–2145. [Google Scholar] [CrossRef]
- Yu, J.; Qi, L.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed 001 Facets. J. Phys. Chem. C. 2010, 114, 13118–13125. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, W.; Cai, J.; Ye, J.; Li, Z.; Ma, Y.; Xie, J.; Qi, L. Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets. Adv. Funct. Mater. 2011, 21, 3554–3563. [Google Scholar] [CrossRef]
- Synowiec, M.; Zakrzewska, K.; Trenczek-Zajac, A.; Szczepanowicz, K.; Radecka, M.; Różycka, A.; Micek-Ilnicka, A. Funcionalized structures based on shape-controlled TiO2. Appl. Surf. Sci. 2018, 473, 603–613. [Google Scholar] [CrossRef]
- Huang, L.; Liu, T.; Zhang, H.; Guo, W.; Zeng, W. Hydrothermal synthesis of different TiO2 nanostructures: Structure, growth and gas sensor properties. J. Mater. Sci. Mater. Electron. 2012, 23, 2024–2029. [Google Scholar] [CrossRef]
- Wu, N.; Wang, J.; Tafen, D.N.; Wang, H.; Zheng, J.G.; Lewis, J.P.; Liu, X.; Leonard, S.S.; Manivannan, A. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc. 2010, 2, 6679–6685. [Google Scholar] [CrossRef]
- Cozzoli, P.D.; Kornowski, A.; Weller, H. Low-temperature synthesis of soluable and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 2003, 14539–14548. [Google Scholar] [CrossRef] [PubMed]
- Amoli, V.; Bhat, S.; Maurya, A.; Banerjee, B.; Bhaumik, A.; Sinha, A.K. Tailored synthesis of porous TiO2 nanocubes and nano parallelepipeds with exposed 111 facets and mesoscopic void space a superior candidate for efficient dye sensitized solar cell. ACS Appl. Mater. Interfaces 2015, 7, 26022–26035. [Google Scholar] [CrossRef]
- Gao, B.; Wan, J.; Hu, D.; Chen, Y.; Lin, B. Enhanced visible-light-driven photocatalytic performance of In2O3-loaded TiO2 nanocubes with exposed (001) facet. Chem. Res. Chin. Univ. 2017, 33, 934–938. [Google Scholar] [CrossRef]
- Ye, L.; Liu, J.; Tian, L.; Peng, T.; Zan, L. The replacement of {101} by {010} facets inhibits the photocatalytic activity of anatase TiO2. Appl. Catal. B Environ. 2013, 134–135, 60–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, W.; Ye, H.; Li, Y. Enhanced carbon monoxide sensing properties of TiO2 with exposed (001) facet: A combined first-principle and experimental study. Appl. Surf. Sci. 2018, 442, 507–516. [Google Scholar] [CrossRef]
- Wu, L.; Yang, B.X.; Yang, X.H.; Chen, Z.G.; Li, Z.; Zhao, H.J.; Gong, X.Q.; Yang, H.G. On the synergistic effect of hydrohalic acids in the shape-controlled synthesis of anatase TiO2 single crystals. CrystEngComm 2013, 15, 3252–3255. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Xu, B.Q. Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Appl. Catal. B Environ. 2005, 59, 139–146. [Google Scholar] [CrossRef]
- Ruso, J.M.; Verdinelli, V.; Hassan, N.; Pieroni, O.; Messina, P.V. Enhancing CaP biomimetic growth on TiO2 cuboids nanoparticles via highly reactive facets. Langmuir 2013, 29, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, X.; Xie, S.; Kuang, Q.; Ouyang, J.; Xie, Z.; Zheng, L. Carbonate ions-assisted syntheses of anatase TiO2 nanoparticles exposed with high energy (001) facets. RSC Adv. 2012, 2, 3251–3253. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Anatase TiO2 mesocrystals enclosed by (001) and (101) facets: Synergistic effects between Ti3+ and facets for their photocatalytic performance. Chem. A Eur. J. 2012, 18, 12584–12589. [Google Scholar] [CrossRef] [PubMed]
- Dinh, C.-T.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O. Shape-controlled synthesis of highly crystalline titania nanocrystals. ASC Nano 2009, 3, 3737–3743. [Google Scholar] [CrossRef]
- Chen, C.; Hu, R.; Mai, K.; Ren, Z.; Wang, H.; Qian, G.; Wang, Z. Shape evolution of highly crystalline anatase TiO2 nanobipyramids. Cryst. Growth Des. 2011, 11, 5221–5226. [Google Scholar] [CrossRef]
- Wu, W.; Yang, S.; Pan, J.; Sun, L.; Zhou, J.; Dai, Z.; Xiao, X.; Zhang, H.; Jiang, C. Metal ion-mediated synthesis and shape-dependent magnetic properties of single-crystalline α-Fe2O3 nanoparticles. CrystEngComm 2014, 16, 5566–5572. [Google Scholar] [CrossRef]
- Gao, F.; Liu, R.; Yin, J.; Lu, Q. Synthesis of polyhedral iron oxide nanocrystals bound by high-index facets. Sci. China Chem. 2014, 57, 114–121. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, B.; Ding, Z.; Zheng, H.; Huang, L.; Pan, J.; Wu, W.; Zhang, H. Tetragonal hematite single crystals as anode materials for high performance lithium ion batteries. J. Power Sources 2015, 286, 124–129. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.; Wu, W.; Tian, Q.; Cui, S.; Dai, Z.; Ren, F.; Xiao, X.; Jiang, C. 3D Flowerlike α-Fe2O3@TiO2 Core-Shell Nanostructures: General Synthesis and Enhanced Photocatalytic Performance. ACS Sustain. Chem. Eng. 2015, 3, 2975–2984. [Google Scholar] [CrossRef]
- Liang, H.; Jiang, X.; Qi, Z.; Chen, W.; Wu, Z.; Xu, B.; Wang, Z.; Mi, J.; Li, Q. Hematite concave nanocubes and their superior catalytic activity for low temperature CO oxidation. Nanoscale 2014, 6, 7199–7203. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Jiang, Y.; Lu, Q.; Du, W.; Gao, F. Al3+-controlled synthesis and magnetic property of α-Fe2O3 nanoplates. CrystEngComm 2013, 15, 443–446. [Google Scholar] [CrossRef]
- Kusior, A.; Michalec, K.; Jelen, P.; Radecka, M. Shaped Fe2O3 nanoparticles—Synthesis and enhanced photocatalytic degradation towards RhB. Appl. Surf. Sci. 2018, 476, 342–352. [Google Scholar] [CrossRef]
- Wei, W.; Rui, H.; Fei, L.; Xintai, S.; Yanglong, H. Single- crystalline α -Fe2O3 nanostructures: Controlled synthesis and high-index planes-enhanced photodegradation by visible light. J. Mater. Chem. A. 2013, 23, 6888–6894. [Google Scholar] [CrossRef]
- Abdul Rashid, N.M.; Haw, C.; Chiu, W.; Khanis, N.H.; Rohaizad, A.; Khiew, P.; Abdul Rahman, S. Structural- and optical-properties analysis of single crystalline hematite (α-Fe2O3) nanocubes prepared by one-pot hydrothermal approach. CrystEngComm 2016, 18, 4720–4732. [Google Scholar] [CrossRef]
- Ouyang, J.; Pei, J.; Kuang, Q.; Xie, Z.; Zheng, L. Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. ASC Appl. Mater. Interfaces 2014, 6, 12505–12514. [Google Scholar] [CrossRef] [PubMed]
- Haiying, G.; Tifeng, J.; Qingrui, Z.; Adan, L.; Faming, G. Preparation, characterization and photocatalytic property of cubic α-Fe2O3 nanoparticles. Rare Metal Mater. Eng. 2015, 44, 2688–2691. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, E.; Yan, Q.; Hu, Z.; Xiao, X.; Chen, D. The effect of crystal face of Fe2O3 on the electrochemical performance for lithium-ion batteries. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wu, S.; Yang, D.; Liu, P.; Zhang, H.; Wang, S.; Yao, X.; Zhu, G.; Zhao, H. Single crystal α-Fe2O3 with exposed {104} facets for high performance gas sensor applications. RSC Adv. 2012, 2, 6178–6184. [Google Scholar] [CrossRef]
- Ma, J.; Lian, J.; Duan, X.; Liu, X.; Zheng, W. α-Fe2O3: Hydrothermal synthesis, magnetic and electrochemical properties. J. Phys. Chem. C 2010, 114, 10671–10676. [Google Scholar] [CrossRef]
- Long, N.V.; Yang, Y.; Yuasa, M.; Thi, C.M.; Cao, Y.; Nann, T.; Nogami, M. Controlled synthesis and characterization of iron oxide nanostructures with potential applications for gas sensors and the environment. RSC Adv. 2014, 4, 6383–6390. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, B.; Wu, D.; Sun, Y.; Xu, Y. Magnetic and electrochemical behavior of rhombohedral α-Fe2O3 nanoparticles with (104) dominant facets. Particuology 2013, 11, 327–333. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, B.; Wu, D.; Sun, Y.; Xu, Y. Preparation and properties of octadecahedral α-Fe2O3 nanoparticles enclosed by {104} and {112} facets. Eur. J. Inorg. Chem. 2012, 4076–4081. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Chanda, K.; Chu, Y.T.; Chiu, C.Y.; Huang, M.H. Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles. Nanoscale 2014, 6, 8704–8709. [Google Scholar] [CrossRef]
- Li, P.; Ji, J.; Deng, X.; Li, A.; Hu, J.; Li, G.; Zhang, W. Fe2O3 icositetrahedra: Evolution and their comparative photocatalytic activities. CrystEngComm 2015, 17, 7283–7289. [Google Scholar] [CrossRef]
- Tang, L.; Lv, J.; Kong, C.; Yang, Z.; Li, J. Facet-dependent nonenzymatic glucose sensing properties of Cu2O cubes and octahedra. New J. Chem. 2016, 40, 6573–6576. [Google Scholar] [CrossRef]
- Pande, S.; Jana, S.; Basu, S.; Sinha, A.K.; Datta, A.; Pal, T. Nanoparticle-catalyzed clock reaction. J. Phys. Chem. C 2008, 112, 3619–3626. [Google Scholar] [CrossRef]
- Sui, Y.; Fu, W.; Yang, H.; Zeng, Y.; Zhang, Y.; Zhao, Q.; Li, Y.; Zhou, X.; Leng, Y.; Li, M.; et al. Low temperature synthesis of Cu2O crystals: Shape evolution and growth mechanism. Cryst. Growth Des. 2010, 10, 99–108. [Google Scholar] [CrossRef]
- Shang, Y.; Sun, D.; Shao, Y.; Zhang, D.; Guo, L.; Yang, S. A facile top-down etching to create a Cu2O jagged polyhedron covered with numerous {110} edges and {111} corners with enhanced photocatalytic activity. Chem. A Eur. J. 2012, 18, 14261–14266. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Chiu, C.Y.; Huang, M.H. Fabrication of diverse Cu2O nanoframes through face-selective etching. J. Phys. Chem. C 2013, 117, 24611–24617. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, Y.; Li, S.; Feng, S.; Zhang, Y. Nonenzymatic hydrogen peroxide biosensor based on four different morphologies of cuprous oxide nanocrystals. RSC Adv. 2014, 4, 40638–40642. [Google Scholar] [CrossRef]
- Kuo, C.; Huang, M.H. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching. J. Am. Chem. Soc. 2008, 12815–12820. [Google Scholar] [CrossRef]
- Chanda, K.; Rej, S.; Huang, M.H. Facet-dependent catalytic activity of Cu2O nanocrystals in the one-pot synthesis of 1,2,3-triazoles by multicomponent click reactions. Chem. A Eur. J. 2013, 19, 16036–16043. [Google Scholar] [CrossRef]
- Bujan, M.; Sikirić, M.; Filipović-Vinceković, N.; Vdović, N.; Garti, N.; Füredi-Milhofer, H. Effect of anionic surfactants on crystal growth of calcium hydrogen phosphate dihydrate. Langmuir 2001, 17, 6461–6470. [Google Scholar] [CrossRef]
- Liu, X.; Sui, Y.; Yang, X.; Jiang, L.; Wang, F.; Wei, Y.; Zou, B. A feasible approach to synthesize Cu2O microcrystals and their enhanced non-enzymatic sensor performance. RSC Adv. 2015, 5, 59099–59105. [Google Scholar] [CrossRef]
- Han, X.; Liao, F.; Zhang, Y.; Yuan, Z.; Chen, H.; Xu, C. Rapid and template-free synthesis of Cu2O truncated octahedra using glucose as green reducing agent. Mater. Lett. 2018, 210, 31–34. [Google Scholar] [CrossRef]
- Kim, M.C.; Kim, S.J.; Han, S.B.; Kwak, D.H.; Hwang, E.T.; Kim, D.M.; Lee, G.H.; Choe, H.S.; Park, K.W. Cubic and octahedral Cu2O nanostructures as anodes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 23003–23010. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, J.; Li, M.; Liu, K.; Guo, D.; Zhang, Y. Evaluating the electric property of different crystal faces and enhancing the Raman scattering of Cu2O microcrystal by depositing Ag on the surface. Curr. Appl. Phys. 2013, 13, 935–939. [Google Scholar] [CrossRef]
- Sun, S.; Kong, C.; You, H.; Song, X.; Ding, B.; Yang, Z. Facet-selective growth of Cu-Cu2O heterogeneous architectures. CrystEngComm 2012, 14, 40–43. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 2012, 116, 7515–7519. [Google Scholar] [CrossRef]
- Sun, S.; Kong, C.; Yang, S.; Wang, L.; Song, X.; Ding, B.; Yang, Z. Highly symmetric polyhedral Cu2O crystals with controllable-index planes. CrystEngComm 2011, 13, 2217–2221. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.W. The crystal-facet-dependent effect of polyhedral Cu2O microcrystals on photocatalytic activity. J. Phys. Chem. C 2010, 114, 5073–5079. [Google Scholar] [CrossRef]
- Zhang, D.F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225. [Google Scholar] [CrossRef]
- Jie, Z.; Nosaka, Y. Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline Types. J. Phys. Chem. C 2014, 20, 10824–10832. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A. Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Lett. 2016, 1, 356–359. [Google Scholar] [CrossRef]
- Tachikawa, T.; Majima, T. Metal oxide mesocrystals with tailored structures and properties for energy conversion and storage applications. NPG Asia Mater. 2014, 6, 1–11. [Google Scholar] [CrossRef]
- Batzill, M.; Katsiev, K.; Burst, J.M.; Diebold, U.; Chaka, A.M.; Delley, B. Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: Structure, composition, and electronic properties. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 1–20. [Google Scholar] [CrossRef]
- Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384. [Google Scholar] [CrossRef]
- Xie, Y.P.; Liu, G.; Yin, L.; Cheng, H.M. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J. Mater. Chem. 2012, 22, 6746–6751. [Google Scholar] [CrossRef]
- Jiang, W.; Pang, Y.; Gu, L.; Yao, Y.; Su, Q.; Ji, W.; Au, C.T. Structurally defined SnO2 substrates, nanostructured Au/SnO2 interfaces, and their distinctive behavior in benzene and methanol oxidation. J. Catal. 2017, 349, 183–196. [Google Scholar] [CrossRef]
- Shi, J.; Hu, G.; Cong, R.; Bu, H.; Dai, N. Controllable synthesis of WO3·nH2O microcrystals with various morphologies by a facile inorganic route and their photocatalytic activities. New J. Chem. 2013, 37, 1538–1544. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, S.; Cai, C.; Zhou, B. β- and α-Bi2O3 nanoparticles synthesized via microwave-assisted method and their photocatalytic activity towards the degradation of rhodamine B. Mater. Lett. 2011, 65, 988–990. [Google Scholar] [CrossRef]
- Wu, Y.C.; Chaing, Y.C.; Huang, C.Y.; Wang, S.F.; Yang, H.Y. Morphology-controllable Bi2O3 crystals through an aqueous precipitation method and their photocatalytic performance. Dye. Pigment. 2013, 98, 25–30. [Google Scholar] [CrossRef]
- Li, R.; Han, H.; Zhang, F.; Wang, D.; Li, C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ. Sci. 2014, 7, 1369–1376. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, R.; Mu, L.; Li, C. Significance of crystal morphology controlling in semiconductor-based photocatalysis: A case study on BiVO4 Photocatalyst. Cryst. Growth Des. 2017, 17, 2923–2928. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, B.; Lu, J.; Qin, X.; Zhang, X.; Dai, Y. Hierarchical TiO2 microspheres: Synergetic effect of {001} and {101} facets for enhanced photocatalytic activity. Chem. A Eur. J. 2011, 17, 15032–15038. [Google Scholar] [CrossRef]
- Xiang, Q.; Lv, K.; Yu, J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B Environ. 2010, 96, 557–564. [Google Scholar] [CrossRef]
- Tachikawa, T.; Wang, N.; Yamashita, S.; Cui, S.C.; Majima, T. Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. 2010, 49, 8593–8597. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Ioannides, T.; Papadopoulou, C.; Batista, J.; Hocevar, S.; Matralis, H.K. A comparative study of the C3H6+NO+O2, C3H6+O2 and NO+O2 reactions in excess oxygen over Na-modified Pt/g-Al2O3 catalysts. Catal. Today 2002, 75, 157–167. [Google Scholar] [CrossRef]
- Kiely, C.J.; Hodge, N.A.; Hutchings, G.J.; Golunski, S.E.; Whyman, R.; Pankhurst, Q.A.; Wagner, F.E.; Rajaram, R.R. Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catal. Today 2002, 72, 133–144. [Google Scholar] [CrossRef]
- Grenfell, J.L.; Stock, J.W.; Patzer, A.B.C.; Gebauer, S.; Rauer, H. Oxidation of CO on surface hematite in high CO2 atmospheres. Earth Planet. Astrophys. 2010, 1–26. [Google Scholar] [CrossRef]
- Sun, L.; Zhan, W.; Li, Y.-A.; Wang, F.; Zhang, X.; Han, X. Understanding the facet-dependent catalytic performance of hematite microcrystals in a CO oxidation reaction. Inorg. Chem. Front. 2018, 5, 2332–2339. [Google Scholar] [CrossRef]
- Chan, J.Y.T.; Ang, S.Y.; Ye, E.Y.; Sullivan, M.; Zhang, J.; Lin, M. Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3) {104}, {113} and {001} surface facets. Phys. Chem. Chem. Phys. 2015, 17, 25333–25341. [Google Scholar] [CrossRef]
- Rehman, S.; Yang, W.; Liu, F.; Hong, Y.; Wang, T.; Hou, Y. Facile synthesis of anisotropic single crystalline α-Fe2O3 nanoplates and their facet-dependent catalytic performance. Inorg. Chem. Front. 2015, 2, 576–583. [Google Scholar] [CrossRef]
- Xie, S.; Jia, H.; Lu, F.; Sun, N.; Yu, J.; Liu, S.; Zheng, L. Controlled synthesis of α-Fe2O3 nanostructures with the assistance of ionic liquid and their distinct photocatalytic performance under visible-light irradiation. CrystEngComm 2015, 17, 1210–1218. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Huang, M.H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C 2008, 112, 31. [Google Scholar] [CrossRef]
- Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M.H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261–1267. [Google Scholar] [CrossRef]
- Ho, J.Y.; Huang, M.H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 2009, 113, 14159–14164. [Google Scholar] [CrossRef]
- Sun, S.; Song, X.; Sun, Y.; Deng, D.; Yang, Z. The crystal-facet-dependent effect of polyhedral Cu2O microcrystals on photocatalytic activity. Catal. Sci. Technol. 2012, 2, 925–930. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B. Cu2O nanocrystals: surfactant-free room-temperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities. J. Phys. Chem. C 2011, 115, 15288–15296. [Google Scholar] [CrossRef]
- Leng, M.; Yu, C.; Wang, C. Polyhedral Cu2O particles: Shape evolution and catalytic activity on cross-coupling reaction of iodobenzene and phenol. CrystEngComm 2012, 14, 8454–8461. [Google Scholar] [CrossRef]
- Li, L.; Nan, C.; Peng, Q.; Li, Y. Selective synthesis of Cu2O nanocrystals as shape-dependent catalysts for oxidative arylation of phenylacetylene. Chem. A Eur. J. 2012, 18, 10491–10496. [Google Scholar] [CrossRef]
- Pang, H.; Gao, F.; Lu, Q. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. CrystEngComm 2010, 12, 406–412. [Google Scholar] [CrossRef]
- Leng, M.; Liu, M.; Zhang, Y.; Wang, Z.; Yu, C.; Yang, X.; Zhang, H.; Wang, C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc. 2010, 132, 17084–17087. [Google Scholar] [CrossRef] [PubMed]
- Meldal, M.P.; Meldal, M.; Tornøe, C.W. Cu-catalyzed azide—Alkyne cycloaddition Cu-catalyzed azide—alkyne cycloaddition. Chem. Rev. 2017, 108, 2952–3015. [Google Scholar] [CrossRef]
- Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Deliv. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef]
- Park, H.; Kim, H.I.; Moon, G.H.; Choi, W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 2016, 9, 411–433. [Google Scholar] [CrossRef]
- Wang, L.; Ge, J.; Wang, A.; Deng, M.; Wang, X.; Bai, S.; Li, R.; Jiang, J.; Zhang, Q.; Luo, Y.; et al. Designing p-type semiconductor-metal hybrid structures for improved photocatalysis. Angew. Chem. Int. Ed. 2014, 53, 5107–5111. [Google Scholar] [CrossRef]
- Gaskov, A.M.; Rumyantseva, M.N. Nature of gas sensitivity in nanocrystalline metal oxides. Russ. J. Appl. Chem. 2001, 74, 440–444. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theoretical approach to the rate of response of semiconductor gas sensor. Sens. Actuators B Chem. 2010, 150, 132–140. [Google Scholar] [CrossRef]
- Zhao, Q.; Shen, Q.; Yang, F.; Zhao, H.; Liu, B.; Liang, Q.; Wei, A.; Yang, H.; Liu, S. Direct growth of ZnO nanodisk networks with an exposed (0001) facet on Au comb-shaped interdigitating electrodes and the enhanced gas-sensing property of polar {0001} surfaces. Sens. Actuators B Chem. 2014, 195, 71–79. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Wang, G.; Liu, L.; Yuan, C.; Yu, T.; Li, Q.; Zeng, F.; Gu, G. Enhanced gas-sensing properties of the hierarchical TiO2 hollow microspheres with exposed high-energy {001} crystal facets. ACS Appl. Mater. Interfaces 2015, 7, 24902–24908. [Google Scholar] [CrossRef]
- Yang, Y.; Hong, A.; Liang, Y.; Xu, K.; Yu, T.; Shi, J.; Zeng, F.; Qu, Y.; Liu, Y.; Ding, M.; et al. High-energy {001} crystal facets and surface fluorination engineered gas sensing properties of anatase titania nanocrystals. Appl. Surf. Sci. 2017, 423, 602–610. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Gurlo, A. Nanosensors: Towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 2011, 3, 154–165. [Google Scholar] [CrossRef]
- Wang, C.; Cai, D.; Liu, B.; Li, H.; Wang, D.; Liu, Y.; Wang, L.; Wang, Y.; Li, Q.; Wang, T. Ethanol-sensing performance of tin dioxide octahedral nanocrystals with exposed high-energy {111} and {332} facets. J. Mater. Chem. A 2014, 2, 10623–10628. [Google Scholar] [CrossRef]
- Han, X.; Zheng, L.; Jin, M.; Jiang, Y.; Kuang, Q.; Xie, Z.; Jiang, Z.; Xie, S. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-gensing properties. Angew. Chem. Int. Ed. 2009, 48, 9180–9183. [Google Scholar] [CrossRef]
- Xu, J.; Xiang, Q.; Xue, Z.; Qin, N.; Cheng, Z. The crystal facet-dependent gas sensing properties of ZnO nanosheets: Experimental and computational study. Sensors Actuators B Chem. 2016, 242, 148–157. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Yu, H.; Zhai, T.; Xu, Q.; Yang, X.; Wang, J.; Cao, B. Different morphologies of ZnO and their triethylamine sensing properties. J. Alloys Compd. 2017, 706, 461–469. [Google Scholar] [CrossRef]
- Qin, N.; Xiang, Q.; Zhao, H.; Zhang, J.; Xu, J. Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm 2014, 16, 7062–7073. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Zhang, Z.; Yue, J.; Zakaria, Q.M.D.; Chen, C.; Jiang, X.; Yu, A. Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: Experimental and theoretical studies. Phys. Chem. Chem. Phys. 2014, 16, 11471–11480. [Google Scholar] [CrossRef]
- Han, X.G.; He, H.Z.; Kuang, Q.; Zhou, X.; Zhang, X.H.; Xu, T.; Xie, Z.X.; Zheng, L.S. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 2009, 113, 584–589. [Google Scholar] [CrossRef]
- Patil, V.L.; Bhosale, J.L.; Shendage, S.S.; Vanalakar, S.A.; Patil, S.P.; Patil, P.S.; Kim, J.H.; Harale, N.S. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem. 2016, 240, 426–433. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.; Hu, Z.; Zhou, Z.; Deng, Y. Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J. Phys. Chem. C 2010, 114, 9970–9974. [Google Scholar] [CrossRef]
- Devi, G.S.; Hyodo, T.; Shimizu, Y.; Egashira, M. Synthesis of mesoporous TiO2-based powders and their gas-sensing properties. Sens. Actuators B Chem. 2002, 87, 122–129. [Google Scholar] [CrossRef]
- Carney, C.M.; Yoo, S.; Akbar, S.A. TiO2-SnO2 nanostructures and their H2 sensing behavior. Sens. Actuators B Chem. 2005, 108, 29–33. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Guglielmi, M.; Agnoli, S.; Granozzi, G.; Post, M.L.; Bello, V.; Mattei, G.; Martucci, A. Au nanoparticles in nanocrystalline TiO2-NiO films for SPR-based, selective H2S gas sensing. Chem. Mater. 2010, 22, 3407–3417. [Google Scholar] [CrossRef]
- Barreca, D.; Carraro, G.; Comini, E.; Gasparotto, A.; MacCato, C.; Sada, C.; Sberveglieri, G.; Tondello, E. Novel synthesis and gas sensing performances of CuO-TiO2 nanocomposites functionalized with Au nanoparticles. J. Phys. Chem. C 2011, 115, 10510–10517. [Google Scholar] [CrossRef]
- Tang, H.; Prasad, K.; Sanjines, R.; Levy, F. TiO2 anatase thin films as gas sensors. Sens. Actuators B Chem. 1995, 26–27, 71–75. [Google Scholar] [CrossRef]
- Sclafani, A.; Herrmann, J.M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J. Phys. Chem. 1996, 100, 13655–13661. [Google Scholar] [CrossRef]
- Yang, G.; Hu, P.; Cao, Y.; Yuan, F.; Xu, R. Fabrication of porous TiO2 hollow spheres and their application in gas sensing. Nanoscale Res. Lett. 2010, 5, 1437–1441. [Google Scholar] [CrossRef]
- Galstyan, V.; Comini, E.; Faglia, G.; Sberveglieri, G. TiO2 nanotubes: Recent advances in synthesis and gas sensing properties. Sensors 2013, 13, 14813–14838. [Google Scholar] [CrossRef]
- Zakrzewska, K.; Radecka, M. TiO2-Based Nanomaterials for Gas Sensing—Influence of Anatase and Rutile Contributions. Nanoscale Res. Lett. 2017, 12, 89–96. [Google Scholar] [CrossRef]
- Cukierman, S. Et tu, Grotthuss! and other unfinished stories. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 876–885. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Reactions of hydrated hydronium ions and hydrated hydroxide ions with some hydrocarbons and oxygen-bearing organic molecules. J. Phys. Chem. 1995, 99, 15551–15556. [Google Scholar] [CrossRef]
- Chaplin, M. Water structure and science. Available online: http://www1.lsbu.ac.uk/water/grotthuss.html (accessed on 19 March 2019).
- Cuong, N.D.; Khieu, D.Q.; Hoa, T.T.; Quang, D.T.; Viet, P.H.; Lam, T.D.; Hoa, N.D.; Hieu, N.V. Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor. Mater. Res. Bull. 2015, 68, 302–307. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, K.; Zhangand, S.; Xie, Y. Hematite hollow spheres with a mesoporous shell: Controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C 2008, 112, 11307–11313. [Google Scholar] [CrossRef]
- Yan, H.; Su, X.; Yang, C.; Wang, J.; Niu, C. Improved photocatalytic and gas sensing properties of α-Fe2O3 nanoparticles derived from β-FeOOH nanospindles. Ceram. Int. 2014, 40, 1729–1733. [Google Scholar] [CrossRef]
- Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceram. 2010, 25, 11–19. [Google Scholar] [CrossRef]
- Hübner, M.; Simion, C.E.; Tomescu-Stǎnoiu, A.; Pokhrel, S.; Bârsan, N.; Weimar, U. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuators B Chem. 2011, 153, 347–353. [Google Scholar] [CrossRef]
- Mazhar, M.E.; Faglia, G.; Comini, E.; Zappa, D.; Baratto, C.; Sberveglieri, G. Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sens. Actuators B Chem. 2016, 222, 1257–1263. [Google Scholar] [CrossRef]
- Meng, F.N.; Di, X.P.; Dong, H.W.; Zhang, Y.; Zhu, C.L.; Li, C.; Chen, Y.J. Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sens. Actuators B Chem. 2013, 182, 197–204. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 2006, 867–871. [Google Scholar] [CrossRef]
- Shishiyanu, S.T.; Shishiyanu, T.S.; Lupan, O.I. Novel NO2 gas sensor based on cuprous oxide thin films. Sens. Actuators B Chem. 2006, 113, 468–476. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Wang, Q.; Geng, B. Microwave chemical route to self-assembled quasi-spherical Cu2O microarchitectures and their gas-sensing properties. Sens. Actuators B Chem. 2009, 143, 253–260. [Google Scholar] [CrossRef]
- Lin, Y.; Cui, X.; Li, L. Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochem. Commun. 2005, 7, 166–172. [Google Scholar] [CrossRef]
- Bahnemann, D.W.; Hoffmann, M.R.; Hong, A.P.; Kormann, C. Photocatalytic formation of hydrogen peroxide. In The Chemistry of Acid Rain; American Chemical Society: Washington, DC, USA, 1987; pp. 120–132. [Google Scholar] [CrossRef]
Properties | TiO2 | α-Fe2O3 | Cu2O | |
---|---|---|---|---|
bulk | crystal lattice [24] | anatase | hematite | cuprite |
crystal system [24] | tetragonal | trigonal | cubic | |
space group [24] | I4I/amd (141) | R-3C (167) | Pn-3 m (224) | |
lattice parameters [24,48] | a = b = 0.3785 nm c = 0.9513 nm α = β = γ = 90° | a = b = 0.5038 nm c = 1.3772 nm α = β = 90° γ = 120° | a = 0.4270 nm α = β = γ = 90° | |
cell volume [nm3] [24,48] | 0.1362 | 0.3027 | 0.0778 | |
the atomic separation [nm] [48,49,50] | Ti-O 0.194 O-O 0.279 | Fe-O 0.194 Fe-Fe 0.290 | Cu-O 0.184 O-O 0.368 Cu-Cu 3.01 | |
band gap [eV] [8,24] | 3.2 | 2.2 | 2.2 | |
formula weight [gmol−1] | 79.9 | 159.7 | 143.1 | |
density [gcm−3] [48,51,52] | 3.79 | 5.24 | 5.75 | |
conductivity | n-type | n-type | p-type | |
refractive index [53,54,55] | nord = 2.5612 next = 2.4880 (λ = 589.3 nm) | 2.6580 (λ = 2.5 μm) | 2.2620 (λ = 2.5 μm) | |
surface | surface energy [Jm−2] [30,56,57,58,59,60,61,62] | |||
(001) | 0.98 | 1.53 | ||
(100) | 0.58 | 1.37 | 1.194 | |
(101) | 0.49 | 1.31 | 28.80 | |
(111) | 0.677 | |||
(012) | 1.06 | 0.80 | ||
(104) | 1.45 | |||
atomic planar | ||||
density [nm−2] [8] | ||||
(001) | 6.9821 | 4.5494 | ||
(100) | 5.7651 | 10.997 | ||
(101) | 5.1611 | |||
(110) | 7.7618 | |||
(111) | 6.3375 | |||
(113) | 7.3047 | |||
(012) | 5.7651 | |||
dangling bonds | ||||
density [nm−2] [8] | ||||
(001) | 20.9463 | 13.6482 | ||
(100) | 11.5302 | 21.954 | ||
(101) | 10.3222 | 7.7618 | ||
(110) | 6.3375 | |||
(111) | ||||
(113) | 21.9147 | |||
(012) | 17.3953 |
{100} | {010} | {001} | |
---|---|---|---|
Fe3+ | 2.89 nm−2 | 2.89 nm−2 | 9.11 nm−2 |
O2− | 5.78 nm−2 | 5.78 nm−2 | 13.8 nm−2 |
Synthesis Method | Ion Source | Other Reagents | Reaction Condition | Capping Agents | Ligand/(hkl) | Exposed Facets | Application | Ref. |
---|---|---|---|---|---|---|---|---|
rod | ||||||||
hydrothermal | TTIP | DEA, TBAH | 225 °C/24 h | DEA | DEA/(001) | (100) (101) | photocatalysis | [98] |
solution of TTIP in 2-propanol | TBAH, Me4NOH | 180 °C/10 h | - | - | (100) (101) | - | [99] | |
ATNWs | H2O | 200 °C/24 h | CTAB | CTAB/(100) | (100) n/a | photocatalysis | [42] | |
NaTNWs | H2O | 200 °C/24 h | OH− | OH−/(100) | (100) n/a | promising photocatalyst | [100] | |
wet-chemical | TTIP | TMAO | 80-100 °C/6-12 h | Oleic acid | n/a | n/a | - | [108] |
truncated cube | ||||||||
hydrothermal | TTIP | DEA, TBAH | 225 °C/24 h | DEA | DEA/(001) | (101) (100) (001) | photocatalysis | [98] |
cube | ||||||||
hydrothermal | TBT | acetic acid, H2O | 180 °C/24 h | [bmin][BF4] | F−/(001) [bmim]+/(100) | (001) (100) | sodium ion battery anodes | [101] |
TBT | - | 160 °C/20 h | OLEA, NH3, HF | NH3 and HF/(111) | (101) (011) (111) | DSSC devices | [109] | |
TiF4 | H2O2, H2O | 180 °C/2 h | n/a | n/a | (001) n/a | photocatalysis | [110] | |
wet-chemical | TiCl4 | H2O | 90 °C/4.5 h | CNC | n/a | n/a | --- | [101] |
sheet | ||||||||
solvothermal | H2O, acetic acid | [Na][BF4] | 200 °C/24h | F−/(001) | H2O, acetic acid | (001) (101) | promising photocatalyst | [104] |
hydrothermal | TTIP | TBAH | 225 °C/24 h | DEA | DEA/(001) | (100) (001) | photocatalysis | [98] |
TiF4 | H2O | 180 °C/20 h | HF | F−/(001) | (001) (101) | - | [25] | |
TTIP | H2O | 180 °C/24 h | HF | F−/(001) | (001) (101) | photocatalysis | [102] | |
TBOT | H2O | 180 °C/24 h | HF | F−/(001) | (001) (101) | gas sensors | [9] | |
TTIP | H2O | 200 °C/24 h | HF | n/a | (001) (101) | photocatalysis | [28] | |
TBOT | H2O | 180 °C/2 h | HF | F−/(001) | (001) (101) | H2 production | [103] | |
TBOT | HCl, H2O | 150-180 °C /24 h | (NH4)2TiF6 | F−/(001) | (001) (101) | promising photocatalyst | [110] | |
TiCl3 | H2O | 180 °C/24 h | NH4F | F−/(001) | (001) (101) | gas sensors | [111] | |
TiCl3 | NiCl2 | 180 °C/2 h | NH4F | F−/(001) | (001) (101) | gas sensors | [112] | |
truncated cuboid | ||||||||
hydrothermal | TTIP | DEA, TBAH | 225 °C/24 h | DEA | DEA/(001) | (101) (100) (001) | photocatalysis | [98] |
solution of TTIP in 2-propanol | TBAH | 180 °C/10 h | DVMT | Si-OH/(001) | (100) (001) | --- | [99] | |
cuboid | ||||||||
hydrothermal | TiCl4 | H2O | 160 °C/14 h | HCl, HF, | F−/(001) Cl−/(100) | (001) (100) | --- | [113] |
solvothermal | TTIP | acetic acid, H2O | 200 °C/24 h | [bmim][BF4] | F−/(001), [bmim]+/(100) | (001) (100) | promising photocatalyst | [104] |
wet-chemical | TiCl4 | ethanol, NH3 | 0 °C/5 h | - | n/a | n/a | photocatalysis | [114] |
truncated octahedra | ||||||||
wet-chemical | TiCl4 | H2O, n-heptane | 100 °C/24 h | AOT | RSO3−/(101) | (101) (001) | biomedical applications | [115] |
hydrothermal | KTNWs | H2O | 200 °C/16 h | urea | CO32−/(001) | (101) (001) | photocatalysis | [116] |
TTIP | H2O | 160 °C/10 h | CH2O2 | CH2O2/(101) | (101) (001) | photocatalysis | [117] | |
TBOT | ethanol | 180 °C/18 h | Oleic acid, OLEA | Oleic acid/(001) OLEA/(101) | (101) (001) | - | [118] | |
ATNWs | H2O, NH4F | 200 °C/24 h | NH4F | F−/(001) | (101) (001) | photocatalysis | [42] | |
TBOT | oleic acid, NaF | 250 °C/24 h | oleic acid, F− | F−/(001) oleic acid- n/a | (101) (001) | photocatalysis | [119] | |
octahedra | ||||||||
hydrothermal | KTNWs | H2O | 170 °C/4 h | - | - | (101) | photocatalysis DSSC devices | [43] |
KTNWs | H2O | 200 °C/16 h | NH4Cl | NH4+/n/a | (101) | photocatalysis | [116] | |
TBOT | Oleic acid, OLEA, ethanol | 180 °C/18 h | Oleic acid, OLEA | Oleic acid/(001) OLEA/(101) | (101) | - | [118] | |
belt | ||||||||
hydrothermal | P25 | NaOH | 180 °C/24 h | (101) | gas sensors | [106] | ||
HTiO3 | H2O | 170 °C/24 h | (010) (101) | photocatalysis DSSC devices | [43] | |||
TiO2 powder | NaOH | 200 °C/24 h | (101) | photocatalysis | [107] |
Synthesis Method | Ion Source | Ion Additive | Exposed Facets | Reaction Condition | Application | Ref. |
---|---|---|---|---|---|---|
cube | ||||||
hydrothermal | Fe(C2H2O2)2 | - | {102} {012} {112} | 180 °C/2 h | photocatalytic degradation of RhB | [127] |
FeCl3*6H2O | - | {102} {012} {112} | 180 °C/4–12 h | can be used for magnetic properties | [128] | |
K3[Fe(CN)6] | Ni2+, Zn2+ | {012} {10−2} {1-12} | 160 °C/6 h | - | [121] | |
Fe(NO3)3 | Zn2+ | {014} {104} | 160 °C/16 h | lithium-ion batteries | [122] | |
Fe(NO3)3*9H2O | Zn2+ | {104} {−1−10} | 160 °C/16 h | magnetic properties | [120] | |
FeCl3*6H2O | - | n/a | 160 °C/24 h | photocatalytic degradation of RhB | [130] | |
Fe(NO3)3*9H2O | Zn2+ | {012} | 160 °C/6 h | photocatalytic degradation of RhB | [123] | |
Fe(NO3)3*9H2O | Na+ | {102} {104} | 200 °C/24 h | photocatalytic O2 evolution | [32] | |
cuboid | ||||||
hydrothermal | FeCl3*6H2O | - | {010} {001} | 180 °C/4 h | lithium-ion batteries | [131] |
thorhombic | ||||||
hydrothermal | Fe(NO3)3 | Cu2+ | {−102} {012} | 160 °C/16 h | lithium ion batteries | [122] |
Fe(NO3)3*9H2O | Cu2+ | {−102} {012} | 160 °C/16 h | magnetic properties | [120] | |
Fe(NO3)3*9H2O | Cu2+ | {104} | 160 °C/6 h | photocatalytic degradation of RhB | [123] | |
polyhedron | ||||||
hydrothermal | FeCl3*6H2O | - | {104} | 120 °C/12 h | humidity sensors | [132] |
Fe(acac)3 | Na+ | {012} | 180 °C/24 h | CO conversion, acetone and methanol sensing | [129] | |
K3[Fe(CN)6] | Cu2+ | {104} | 160 °C/6 h | - | [133] | |
FeCl3*6H2O | - | {104} | 180 °C/8 h | lithium storage | [133] | |
FeCl3 | Na+ | {100} {011} {111} | 200–230 °C/0.5 h | potentially exhibits good properties in future gas sensor | [134] | |
rhombohedron | ||||||
hydrothermal | FeCl3*6H2O | - | {104} | 220 °C/24 h | electrochemical sensor for H2O2 | [135] |
FeCl3*6H2O | - | {104} | 150 °C/75 min | lithium storage | [136] | |
octahedron | ||||||
microwave assisted | FeCl3*6H2O | - | n/a | 150 °C/2 h | lithium storage | [93] |
hydrothermal | FeCl3 | Na+ | {012} {104} | 220 °C/48 h | photocatalytic O2 evolution | [32] |
FeCl3*6H2O | - | {104} {112} | 220° C/24 h | electrochemical sensor for H2O2 | [137] | |
plate | ||||||
hydrothermal | Fe(acac)3 | - | {001} {012} | 180 °C/24 h | CO conversion, acetone and methanol sesning | [129] |
FeCl3*6H2O | Na+ | {001} | 200 °C/22 h | lithium-ion batteries | [131] | |
Fe(NO3)3*9H2O | Al3+ | {110} | 160 °C/6 h | photocatalytic degradation of RhB | [123] | |
Fe(NO3)3 | Al3+ | {001} | 160 °C/16 h | magnetic properties | [125] | |
FeCl3 | Na+ | n/a | 140 °C–200 °C/0.5 h | photocatalytic degradation of MB | [94] | |
concave | ||||||
hydrothermal | Fe(NO3)3 | Cu2+ | {13−44} {12−38} | at 140 °C for 16 h | catalytic activity and high stability for CO oxidation | [124] |
icositetrahedron | ||||||
hydrothermal | FeCl3*9H2O | Na+ | {113} {110} | 22 °C/5 h | photocatalytic degradation of RhB | [138] |
Synthesis Method | Ion Source | Reaction Condition | Capping Reagent/Reducing Agent | Application | Ref. |
---|---|---|---|---|---|
cube | |||||
wet-chemical | CuCl2*2H2O | 30 °C/30 min | PVP/AA | lithium-ion batteries | [150] |
Cu(Ac)2 | 50 °C/30 min | N2H4/N2H4 |
| [138] | |
CuCl2 | 30–32 °C/1 h | SDS/NH2OH*HCl | catalyzed click reactions | [146] | |
CuSO4 | 80 °C/2 h | PVP/glucose | ----- | [141] | |
CuSO4 | 70 °C/6–7 min | N2H4/glucose | clock reactions, catalytic activity | [140] | |
CuSO4 | 55 °C/1 h | EDTA/glucose | nonenzymatic glucose sensor | [139] | |
CuCl2 | 32–34 °C/1 h | SDS/NH4OH*HCl | can be used as catalyst and hosts for nanostructure encapsulation | [143] | |
hydrothermally | Cu(Ac)2 | 80 °C/2 h | AOT/AA | photocatalytic H2 evaluation—methanol decomposition | [16] |
CuCl2*2H2O | SDS/NH4OH*HCl | biosensor (H2O2) | [144] | ||
CuCl2*2H2O | 150 °C/12 h | PVP/AA | CO gas sensing | [76] | |
concave cubes | |||||
hydrothermally | Cu(Ac)2 | 80 °C/2 h | AOT/AA | photocatalytic H2 evaluation—methanol decomposition | [16] |
octahedron | |||||
wet-chemical | CuCl2 | RT/5–60 min | PVP/N2H4 | photocatalytic degradation of methylene orange | [90] |
CuCl2*2H2O | 30 °C/30 min | PVP/AA | lithium-ion batteries | [150] | |
CuCl2 | 50 °C/30 min | N2H4/N2H4 |
| [138] | |
CuCl2 | 30–32 °C/2 h | SDS/NH2OH*HCl | catalyzed click reactions | [146] | |
CuCl2 | 30 °C/20 min | PVP/AA | gas sensing | [33] | |
hydrothermally | Cu(NO3)2 | ammonia/- | photocatalytic activity | [151] | |
Cu(Ac)2 | at 140 °C for 24 h | glycine/- | bacterial activity | [91] | |
CuCl2*2H2O | SDS/NH2OH*HCl | biosensor (H2O2) | [144] | ||
cuboctahedron | |||||
wet-chemical | CuCl2 | RT/5–60 min | PVP/N2H4 | photocatalytic degradation | [90] |
CuCl2*2H2O | 55 °C/3 h | PVP/- |
| [18] | |
rhombic dodecahedron | |||||
wet-chemical | CuCl2 | SDS/NH2OH*HCl |
| [145] | |
CuCl2 | 30–32 °C/1 h | SDS/NH2OH*HCl | catalyzed click reactions | [146] | |
hydrothermally | CuCl2*2H2O | SDS/NH2OH*HCl | biosensor (H2O2) | [144] | |
facet-selective etching | CuCl2 | 32–34 °C/1 h | SDS/NH2OH*HCl | use as catalyst and hosts for nanostructure encapsulation | [143] |
truncated octahedra | |||||
hydrothermally | Cu(NO3)2 | ammonia/- | photocatalytic activity | [151] | |
wet-chemical | CuCl2*2H2O | 1–10 h/75 °C | -/glucose |
| [149] |
CuSO4 | 80 °C/2 h | [141] | |||
octopod | |||||
wet-chemical | Cu(Ac)2 | 80 °C/2 h | AOT/AA |
| [16] |
Cu(Ac)2 | 32–34 °C/2 h | SDS/NH2OH*HCl |
| [138] | |
polyhedron | |||||
wet-chemical | CuCl2*2H2O | 55 °C/3 h | PVP/AA | photocatalytic activity on the decomposition of methylene orange | [142] |
Cu(Ac)2 | 150 °C/12 h | N2H4/glucose |
| [152] | |
star-shaped/extended hexapod | |||||
wet-chemical | CuSO4 | 80 °C/2 h | PVP/glucose | [141] | |
CuSO4*5H2O | 80 °C/15 min | KBr/gluose and trisodium citrate | non-enzymatic sensor | [148] | |
hydrothermally | CuCl2*2H2O | SDS/NH2OH*HCl | biosensor (H2O2) | [144] | |
concave octahedral | |||||
wet-chemical | CuCl2 | RT/2 h | SDS/NH2OH*HCl | benzene and nitrogen dioxide sensing | [78] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusior, A.; Synowiec, M.; Zakrzewska, K.; Radecka, M. Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals. Crystals 2019, 9, 163. https://doi.org/10.3390/cryst9030163
Kusior A, Synowiec M, Zakrzewska K, Radecka M. Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals. Crystals. 2019; 9(3):163. https://doi.org/10.3390/cryst9030163
Chicago/Turabian StyleKusior, Anna, Milena Synowiec, Katarzyna Zakrzewska, and Marta Radecka. 2019. "Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals" Crystals 9, no. 3: 163. https://doi.org/10.3390/cryst9030163
APA StyleKusior, A., Synowiec, M., Zakrzewska, K., & Radecka, M. (2019). Surface-Controlled Photocatalysis and Chemical Sensing of TiO2, α-Fe2O3, and Cu2O Nanocrystals. Crystals, 9(3), 163. https://doi.org/10.3390/cryst9030163