Stimulated Raman Scattering in Alkali-Earth Tungstate and Molybdate Crystals at Both Stretching and Bending Raman Modes under Synchronous Picosecond Pumping with Multiple Pulse Shortening Down to 1 ps
Abstract
:1. Introduction
2. Theoretical Approach
3. Raman Crystal Characterization
4. Experimental Setup of the Synchronously Pumped Crystalline Raman Laser
5. Experimental Results of SRS Lasing
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Basiev, T.T.; Sobol, A.A.; Zverev, P.G.; Osiko, V.V.; Powell, R.C. Comparative spontaneous Raman spectroscopy of crystals for Raman lasers. Appl. Opt. 1999, 38, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Basiev, T.T.; Sobol, A.A.; Zverev, P.G.; Ivleva, L.I.; Osiko, V.V.; Powell, R.C. Raman spectroscopy of crystals for stimulated Raman scattering. Opt. Mater. 1999, 11, 307–314. [Google Scholar] [CrossRef]
- Basiev, T.T.; Sobol, A.A.; Voronko, Y.K.; Zverev, P.G. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Opt. Mater. 2000, 15, 205–216. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Eichler, H.J.; Ueda, K.I.; Klasson, N.V.; Redkin, B.S.; Li, L.E.; Findeisen, J.; Jaque, D.; Garcia-Sole, J.; Fernandez, J.; et al. Properties of Nd3+-doped and undoped PbWO4, NaY(WO4)2, CaWO4 as laser-active and stimulated Raman scattering-active crystals. Appl. Opt. 1999, 38, 4533–4547. [Google Scholar] [CrossRef]
- Zverev, P.G.; Basiev, T.T.; Sobol, A.A.; Skornvakov, V.V.; Ivleva, L.I.; Polozkov, N.M.; Osiko, V.V. Stimulated Raman scattering in alkaline-earth tungstate crystals. Quantum Electron. 2000, 30, 55–59. [Google Scholar] [CrossRef]
- Černý, P.; Zverev, P.G.; Jelínková, H.; Basiev, T.T. Efficient Raman shifting of picosecond pulses using BaWO4 crystal. Opt. Commun. 2000, 177, 397–404. [Google Scholar] [CrossRef]
- Černý, P.; Jelínková, H.; Basiev, T.T.; Zverev, P.G. Properties of transient and steady-state stimulated Raman scattering in KGd(WO4)2 and BaWO4 tungstate crystals. Proc. SPIE 2001, 4268, 101–108. [Google Scholar]
- Zverev, P.G.; Basiev, T.T.; Ivleva, L.I.; Osiko, V.V.; Polozkov, N.M. Raman laser on strontium tungstate crystal. OSA TOPS 2002, 68, 70–73. [Google Scholar]
- Zverev, P.G.; Karasik, A.Y.; Basiev, T.T.; Ivleva, L.I.; Osiko, V.V. Stimulated Raman scattering of picosecond pulses in SrMoO4 and Ca3(VO4)2 crystals. Quantum Electron. 2003, 33, 331–334. [Google Scholar] [CrossRef]
- Černý, P.; Jelínková, H.; Zverev, P.G.; Basiev, T.T. Solid state lasers with Raman frequency conversion. Prog. Quantum Electron. 2004, 28, 113–143. [Google Scholar] [CrossRef]
- Basiev, T.T.; Zverev, P.G.; Karasik, A.Y.; Osiko, V.V.; Sobol, A.A.; Chunaev, D.S. Picosecond stimulated Raman scattering in crystals. JETP 2004, 99, 934–941. [Google Scholar] [CrossRef]
- Basiev, T.T.; Gavrilov, A.V.; Osiko, V.V.; Smetanin, S.N.; Fedin, A.V. High-average-power SRS conversion of radiation in a BaWO4 crystal. Quantum Electron. 2004, 34, 649–651. [Google Scholar] [CrossRef]
- Basiev, T.T.; Danileiko, Y.K.; Doroshenko, M.E.; Fedin, A.V.; Gavrilov, A.V.; Osiko, V.V.; Smetanin, S.N. High-energy BaWO4 Raman laser pumped by a self-phase-conjugated Nd:GGG laser. Laser Phys. 2004, 14, 917–921. [Google Scholar]
- Basiev, T.T.; Doroshenko, M.E.; Osiko, V.V.; Sverchkov, S.E.; Galagan, B.I. New mid IR (1.5–22 μm) Raman lasers based on barium tungstate and barium nitrate crystals. Laser Phys. Lett. 2005, 2, 237–238. [Google Scholar] [CrossRef]
- Chen, Y.F.; Su, K.W.; Zhang, H.J.; Wang, J.Y.; Jiang, M.H. New mid IR (1.5–22 μm) Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser. Opt. Lett. 2005, 30, 3335–3337. [Google Scholar] [CrossRef]
- Basiev, T.T.; Basieva, M.N.; Doroshenko, M.E.; Fedorov, V.V.; Osiko, V.V.; Mirov, S.B. Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping. Laser Phys. Lett. 2006, 3, 17–20. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Wang, Q.; Su, F.; Li, S.; Fan, S.; Liu, Z.; Chang, J.; Zhang, S.; Wang, S.; et al. Highly efficient Raman frequency converter with strontium tungstate crystal. IEEE J. Quantum Electron. 2006, 42, 78–84. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Wang, Q.; Zhang, X.; Cong, Z.; Zhang, H.; Wang, J. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm. Opt. Lett. 2007, 32, 2951–2953. [Google Scholar] [CrossRef]
- Fan, Y.X.; Liu, Y.; Wang, Q.; Fan, L.; Wang, H.T.; Jia, G.H.; Tu, C.Y. High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal. Appl. Phys. B 2008, 93, 327–330. [Google Scholar] [CrossRef]
- Zong, N.; Cui, Q.J.; Ma, Q.L.; Zhang, X.F.; Lu, Y.F.; Li, C.M.; Cui, D.F.; Xu, Z.Y.; Zhang, H.J.; Wang, J.Y. High average power 1.5 μm eye-safe Raman shifting in BaWO4 crystals. Appl. Opt. 2009, 48, 7–10. [Google Scholar] [CrossRef]
- Fan, L.; Fan, Y.X.; Li, Y.Q.; Zhang, H.; Wang, Q.; Wang, J.; Wang, H.T. High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal. Opt. Lett. 2009, 34, 1687–1689. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Fan, Y.X.; Duan, Y.H.; Wang, Q.; Wang, H.T.; Jia, G.H.; Tu, C.Y. Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser. Appl. Phys. B 2009, 94, 553–557. [Google Scholar] [CrossRef]
- Basiev, T.T.; Basieva, M.N.; Gavrilov, A.V.; Ershkov, M.N.; Ivleva, L.I.; Osiko, V.V.; Smetanin, S.N.; Fedin, A.V. Efficient conversion of Nd:YAG laser radiation to the eye-safe spectral region by stimulated Raman scattering in BaWO4 crystal. Quantum Electron. 2010, 40, 710–715. [Google Scholar] [CrossRef]
- Lee, A.J.; Pask, H.M.; Piper, J.A.; Zhang, H.; Wang, J. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission. Opt. Express 2010, 18, 5984–5992. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, Z.; Lee, A.J.; Li, J.; Zhang, H.; Wang, J.; Pask, H.M.; Piper, J.A.; Jiang, M. A continuous wave SrMoO4 Raman laser. Opt. Lett. 2011, 36, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Wang, Q.; Zhang, X.; Liu, Z.; Bai, F.; Chan, X.; Cong, Z.; Gao, L.; Wu, Z.; Wang, W.; et al. Simultaneous dual-wavelength generation at 1502 and 1527 nm in ceramic neodymium-doped yttrium aluminum garnet/BaWO4 Raman laser. Appl. Phys. Express 2012, 5, 112704. [Google Scholar] [CrossRef]
- Lan, R.; Ding, S.; Wang, M.; Zhang, J. A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation. Laser Phys. Lett. 2013, 10, 025801. [Google Scholar] [CrossRef]
- Basiev, T.T.; Doroshenko, M.E.; Ivleva, L.I.; Smetanin, S.N.; Jelínek, M.; Kubeček, V.; Jelínková, H. Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation. Quantum Electron. 2013, 43, 616–620. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Guo, X.; Bao, X.; Li, L.; Gui, J. Diode-pumped actively Q-switched Tm, Ho:GdVO4/BaWO4 intracavity Raman laser at 2533 nm. Opt. Lett. 2013, 38, 1206–1208. [Google Scholar] [CrossRef]
- Smetanin, S.N.; Doroshenko, M.E.; Ivleva, L.I.; Jelínek, M.; Kubeček, V.; Jelínková, H. Low-threshold parametric Raman generation of high-order Raman components in crystals. Appl. Phys. B 2014, 117, 225–234. [Google Scholar] [CrossRef]
- Zhang, H.N.; Chen, X.H.; Wang, Q.P.; Zhang, X.Y.; Chang, J.; Gao, L.; Shen, H.B.; Cong, Z.H.; Liu, Z.J. High-efficiency diode-pumped actively Q-switched ceramic Nd:YAG/BaWO4 Raman laser operating at 1666 nm. Opt. Lett. 2014, 39, 2649–2651. [Google Scholar] [CrossRef] [PubMed]
- Kuzucu, O. Watt-level, mid-infrared output from a BaWO4 external-cavity Raman laser at 2.6 μm. Opt. Lett. 2015, 40, 5078–5081. [Google Scholar] [CrossRef] [PubMed]
- Men, S.; Liu, Z.; Cong, Z.; Liu, Y.; Xia, J.; Zhang, S.; Cheng, W.; Li, Y.; Tu, C.; Zhang, X. Single-frequency CaWO4 Raman amplifier at 1178 nm. Opt. Lett. 2015, 40, 530–533. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Zhang, S.; Li, L.; Zhang, X. Diode-pumped actively Q-switched Tm:YAP/BaWO4 intracavity Raman laser. Opt. Express 2015, 23, 10075–10080. [Google Scholar] [CrossRef] [PubMed]
- Farinello, P.; Pirzio, F.; Zhang, X.; Petrov, V. Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm. Appl. Phys. B 2015, 120, 731–735. [Google Scholar] [CrossRef]
- Zhang, H.; Li, P. High-efficiency eye-safe Nd:YAG/SrWO4 Raman laser operating at 1664 nm. Appl. Phys. B 2016, 122, 12. [Google Scholar] [CrossRef]
- Sheng, Q.; Lee, A.; Spence, D.; Pask, H. Wavelength tuning and power enhancement of an intracavity Nd:GdVO4-BaWO4 Raman laser. Opt. Express 2018, 26, 32145–32155. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Men, S.; Cong, Z.; Qin, Z.; Zhang, X.; Zhang, H. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser. Laser Phys. 2018, 28, 045002. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Bagaev, S.N.; Ueda, K.; Takaichi, K.; Eichler, H.J. High-order picosecond SRS and self-SRS generation in Nd3+-doped CaMoO4, SrMoO4 and SrWO4 laser crystals. Cryst. Rep. 2012, 47, 653–657. [Google Scholar] [CrossRef]
- Voronina, I.S.; Ivleva, L.I.; Basiev, T.T.; Zverev, P.G.; Polozkov, N.M. Active Raman media: SrWO4:Nd3+, BaWO4:Nd3+. Growth and characterization. J. Optoelectron. Adv. Mater. 2003, 5, 887–892. [Google Scholar]
- Ivleva, L.I.; Basiev, T.T.; Voronina, I.S.; Zverev, P.G.; Osiko, V.V.; Polozkov, N.M. SrWO4:Nd3+—New material for multifunctional lasers. Opt. Mater. 2003, 23, 439–442. [Google Scholar] [CrossRef]
- Brenier, A.; Jia, G.; Tu, C. Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd3+ crystal. J. Phys. Condens. Matter 2004, 16, 9103–9108. [Google Scholar] [CrossRef]
- Jelínková, H.; Šulc, J.; Basiev, T.T.; Zverev, P.G.; Kravtsov, S.V. Stimulated Raman scattering in Nd:SrWO4. Laser Phys. Lett. 2005, 2, 4–11. [Google Scholar] [CrossRef]
- Jia, G.; Tu, C.; Brenier, A.; You, Z.; Li, J.; Zhu, Z.; Wang, Y.; Wu, B. Thermal and optical properties of Nd3+:SrWO4: A potential candidate for eye-safe 1.517 μm Raman lasers. Appl. Phys. B 2005, 87, 627–632. [Google Scholar] [CrossRef]
- Šulc, J.; Jelínková, H.; Basiev, T.T.; Doroshenko, M.E.; Ivleva, L.I.; Osiko, V.V.; Zverev, P.G. Nd:SrWO4 and Nd:BaWO4 Raman lasers. Opt. Mater. 2007, 30, 195–197. [Google Scholar] [CrossRef]
- Doroshenko, M.E.; Basiev, T.T.; Vassilev, S.V.; Komar, V.K.; Kosmyna, M.B.; Šulc, J.; Jelínková, H. Comparative study of lasing properties of self-Raman capable tungstate and molybdate crystals doped with Nd3+ ions under diode pumping. Opt. Mater. 2007, 30, 54–57. [Google Scholar] [CrossRef]
- Basiev, T.T.; Doroshenko, M.E.; Ivleva, L.I.; Voronina, I.; Konjushkin, V.; Osiko, V.V.; Vassilev, S.V. Demonstration of high self-Raman laser performance of a diode-pumped SrMoO4:Nd3+ crystal. Opt. Lett. 2009, 34, 1102–1104. [Google Scholar] [CrossRef]
- Lupei, A.; Achim, A.; Lupei, V.; Gheorghe, C.; Gheorghe, L.; Hau, S. RE3+ doped SrWO4 as laser and nonlinear active crystals. Rom. J. Phys. 2009, 54, 919–928. [Google Scholar]
- Basiev, T.T.; Smetanin, S.N.; Fedin, A.V.; Shurygin, A.S. Intracavity SRS conversion in diode-pumped multifunctional Nd3+:SrMoO4 laser crystal. Quantum Electron. 2010, 40, 704–709. [Google Scholar] [CrossRef]
- Dunaeva, E.E.; Ivleva, L.I.; Doroshenko, M.E.; Zverev, P.G.; Nekhoroshikh, A.N.; Osiko, V.V. Synthesis, characterization, spectroscopy and laser operation of SrMoO4 crystals co-doped with Tm3+ and Ho3+. J. Cryst. Growth 2015, 432, 1–5. [Google Scholar] [CrossRef]
- Smetanin, S.N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L.I.; Shurygin, A.S. Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 μm from Nd:SrMoO4 self-Raman laser. Laser Phys. Lett. 2016, 13, 015801. [Google Scholar] [CrossRef]
- Smetanin, S.N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L.I. Parametric second Stokes Raman laser output pulse shortening to 300 ps due to depletion of pumping of intracavity Raman conversion. Appl. Phys. B 2016, 122, 260. [Google Scholar] [CrossRef]
- Jelínek, M.; Kubeček, V.; Ivleva, L.I.; Smetanin, S.N. Eye-safe, diode-pumped, passively Q-switched, self-Raman Nd:SrMoO4 laser generating at 4F3/2− > 4I13/2 transition. In Laser Congress (ASSL, LAC); Paper JTu2A.17; OSA Technical Digest Series; OSA: Denver, CO, USA, 2017. [Google Scholar]
- Lubeigt, W.; Bonner, G.M.; Hastie, J.E.; Dawson, M.D.; Burns, D.; Kemp, A.J. Continuous-wave diamond Raman laser. Opt. Lett. 2010, 35, 2994–2996. [Google Scholar] [CrossRef] [PubMed]
- Savitski, V.G.; Friel, I.; Hastie, J.E.; Dawson, M.D.; Burns, D.; Kemp, A.J. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers. IEEE J. Quantum Electron. 2012, 48, 328–337. [Google Scholar] [CrossRef]
- Eremenko, A.S.; Karpuhkin, S.N.; Stepanov, A.I. Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals. Sov. L. Quantum Electron. 1980, 10, 113–114. [Google Scholar] [CrossRef]
- Murray, J.T.; Powell, R.C.; Peyghambarian, N.; Smith, D.; Austin, W.; Stolzenberger, R.A. Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals. Opt. Lett. 1995, 20, 1017–1019. [Google Scholar] [CrossRef] [PubMed]
- Porto, S.P.S.; Scott, J.F. Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4. Phys. Rev. 1967, 157, 716–719. [Google Scholar] [CrossRef]
- Zverev, P.G.; Basiev, T.T.; Sobol, A.A.; Ermakov, I.V.; Gellerman, W. BaWO4 crystal for quasi-cw yellow Raman laser. OSA TOPS 2001, 50, 212–217. [Google Scholar]
- Graham, K.; Fedorov, V.V.; Mirov, S.B.; Doroshenko, M.E.; Basiev, T.T.; Orlovskii, Y.V.; Osiko, V.V.; Badikov, V.; Panyutin, V.L. Pulsed mid-IR Cr2+:ZnS and Cr2+:ZnSe lasers pumped by Raman-shifted Q-switched neodymium lasers. Quantum Electron. 2004, 34, 8–14. [Google Scholar] [CrossRef]
- Sun, W.J.; Wang, Q.P.; Liu, Z.J.; Zhang, X.Y.; Wang, G.T.; Bai, F.; Lan, W.X.; Wan, X.B.; Zhang, H.J. An efficient 1103 nm Nd:YAG/BaWO4 Raman laser. Laser Phys. Lett. 2011, 8, 512–515. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Liu, Z.; Wang, Q.; Cong, Z.; Zhang, Y.; Wang, W.; Wu, Z.; Zhang, H. A high-power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm. Laser Phys. Lett. 2013, 23, 045402. [Google Scholar] [CrossRef]
- Li, X.; Lee, A.J.; Huo, Y.; Zhang, H.; Wang, J.; Piper, J.A.; Pask, H.M.; Spence, D.J. Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser. Opt. Express 2012, 20, 19305–19312. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Wang, Q.; Zhang, X.; Chen, X.; Cong, Z.; Wu, Z.; Bai, F.; Lan, W.; Gao, L. 1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd:YAG/BaWO4 Raman laser. Opt. Express 2012, 20, 17823–17832. [Google Scholar] [CrossRef] [PubMed]
- Carmen, R.L.; Shimizu, F.; Wang, C.S.; Bloembergen, N. Theory of Stokes pulse shapes in transient stimulated Raman scattering. Phys. Rev. A 1970, 2, 60–72. [Google Scholar] [CrossRef]
- Isaev, S.K.; Kornienko, L.S.; Kravtsov, N.V.; Serkin, V.N. Formation of ultrashort light pulses in a laser with a bleachable filter by intracavity generation of Raman emission. Sov. J. Quantum Electron. 1981, 11, 365–370. [Google Scholar] [CrossRef]
- Chunaev, D.S.; Basiev, T.T.; Konushkin, V.A.; Papashvili, A.G.; Karasik, A.Y. Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2− amplifiers. Laser Phys. Lett. 2008, 5, 589–592. [Google Scholar] [CrossRef]
- Weitz, M.; Theobald, C.; Wallenstein, R.; L’huillier, J.A. Passively mode-locked picosecond Nd:YVO4 self-Raman laser. Appl. Phys. Lett. 2008, 92, 091122. [Google Scholar] [CrossRef]
- Grigoryanand, G.G.; Sogomonyan, S.B. Synchronously pumped picosecond Raman laser utilizing an LiIO3 crystal. Sov. J. Quantum Electron. 1989, 19, 1402–1404. [Google Scholar] [CrossRef]
- Grenados, E.; Spence, D.J. Pulse compression in synchronously pumped mode locked Raman lasers. Sov. Opt. Express 2010, 18, 20422–20427. [Google Scholar] [CrossRef]
- Warrier, A.M.; Lin, J.; Pask, H.M.; Mildren, R.P.; Coutts, D.W.; Spence, D.J. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm. Opt. Express 2014, 22, 3325–3333. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, M.; Lin, J.; Mildren, R.P.; Spence, D.J. Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration. Opt. Lett. 2014, 39, 2975–2978. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, M.; Lin, J.; Mildren, R.P.; McConnell, G.; Spence, D.J. Efficient diamond Raman laser generating 65 fs pulses. Opt. Express 2015, 23, 15504–15513. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Spence, D.J. 25.5 fs dissipative soliton diamond Raman laser. Opt. Lett. 2016, 41, 1861–1864. [Google Scholar] [CrossRef]
- Murtagh, M.; Lin, J.; Trägårdh, J.; McConnell, G.; Spence, D.J. Ultrafast second-Stokes diamond Raman laser. Opt. Express 2016, 24, 8149–8155. [Google Scholar] [CrossRef] [PubMed]
- Perillo, E.P.; Jarrett, J.W.; Liu, Y.L.; Hassan, A.; Fernée, D.C.; Goldak, J.R.; Bonteanu, A.; Spence, D.J.; Yen, H.C.; Dunn, A.K. Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser. Light Sci. Appl. 2017, 6, e17095. [Google Scholar] [CrossRef] [PubMed]
- Grenados, E.; Pask, H.M.; Spence, D.J. Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm. Opt. Express 2009, 17, 569–574. [Google Scholar] [CrossRef]
- Grenados, E.; Pask, H.M.; Esposito, E.; McConnell, G.; Spence, D.J. Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser. Opt. Express 2010, 18, 5289–5294. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Long, M.; Chen, M. Study on picosecond collinear eight Stokes Raman laser generation. Appl. Opt. 2017, 56, 1383–1387. [Google Scholar] [CrossRef]
- Warrier, A.M.; Lin, J.; Pask, H.M.; Lee, A.J.; Spence, D.J. Multiwavelength ultrafast LiNbO3 Raman laser. Opt. Express 2015, 23, 25582–25587. [Google Scholar] [CrossRef]
- Frank, M.; Jelínek, M.; Vyhlídal, D.; Kubeček, V.; Ivleva, L.I.; Zverev, P.G.; Smetanin, S.N. Multi-wavelength picosecond BaWO4 Raman laser with long and short Raman shifts and 12-fold pulse shortening down to 3 ps at 1227 nm. Laser Phys. 2018, 28, 025403. [Google Scholar] [CrossRef]
- Frank, M.; Smetanin, S.N.; Jelínek, M.; Vyhlídal, D.; Ivleva, L.I.; Zverev, P.G.; Kubeček, V. Highly efficient picosecond all-solid-state Raman laser at 1179 and 1227 nm on single and combined Raman lines in a BaWO4 crystal. Opt. Lett. 2018, 43, 2527–2530. [Google Scholar] [CrossRef] [PubMed]
- Akhmanov, S.A.; Drabovich, K.N.; Sukhorukov, A.P.; Chirkin, A.S. Stimulated Raman scattering in a field of ultrashort light pulses. Sov. Phys. JETP 1971, 32, 266–273. [Google Scholar]
- Duncan, M.D.; Mahon, R.; Tankersley, L.L.; Reintjes, J. Transient stimulated Raman amplification in hydrogen. J. Opt. Soc. Am. B 1988, 5, 37–52. [Google Scholar] [CrossRef]
- Smetanin, S.N. Determination of the stimulated Raman scattering threshold for a pump pulse of arbitrary width. Opt. Spectrosc. 2016, 121, 395–404. [Google Scholar] [CrossRef]
- Penzkofer, A.; Laubereau, A.; Kaiser, W. High intensity Raman interactions. Prog. Quant. Electron. 2016, 6, 55–140. [Google Scholar] [CrossRef]
- Lisinetskii, V.A.; Bus’ko, D.N.; Chulkov, R.V.; Grabchikov, A.S.; Apanasevich, P.A.; Orlovich, V.A. Low-threshold lasing in stimulated Raman lasers with nanosecond pumping. J. Appl. Spect. 2008, 75, 300–307. [Google Scholar] [CrossRef]
- Frank, M.; Smetanin, S.N.; Jelínek, M.; Vyhlídal, D.; Kopalkin, A.A.; Shukshin, V.E.; Ivleva, L.I.; Zverev, P.G.; Kubeček, V. Synchronously-pumped all-solid-state SrMoO4 Raman laser generating at combined vibrational Raman modes with 26-fold pulse shortening down to 1.4 ps at 1220 nm. J. Opt. Laser Technol. 2019, 111, 129–133. [Google Scholar] [CrossRef]
- Frank, M.; Jelínek, M.; Vyhlídal, D.; Kubeček, V. Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15–70 ps. Proc. SPIE 2016, 10142, 101421E. [Google Scholar]
- Bespalov, V.I.; Pasmanic, G.A. Stimulated Mandel’shtam-Brillouin and stimulated entropy backscattering of light pulses. Sov. Phys. J. Exp. Theor. Phys. 1970, 31, 168–174. [Google Scholar]
- Handbook of Optics. Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed.; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2010.
Crystal | , cm−1 | , cm−1 | , * | , cm−1 | , cm−1 | , * | |
---|---|---|---|---|---|---|---|
CaWO4 | 910 | 6.9 | 18 | 334 | 9 | 10 | 1.8 |
SrWO4 | 921 | 2.7 | 41 | 336 | 8.7 | 12 | 3.5 |
BaWO4 | 925 | 1.6 | 64 | 332 | 3.8 | 27 | 2.4 |
CaMoO4 | 879 | 5.5 | 34 | 322 | 8 | 17 | 2 |
SrMoO4 | 888 | 2.6 | 51 | 327 | 10.5 | 11 | 4.8 |
BaMoO4 | 892 | 2.1 | 62 | 324 | 4 | 31 | 2 |
Mirror | R [%] 1063 nm | R [%] 1174/1178 nm | R [%] 1220/1227 nm | R [%] 1271/1279 nm | R [%] 1310/1321 nm |
---|---|---|---|---|---|
PM | 1.3 | 98.9/98.9 | 99.4/99.4 | 98.1/97.1 | 73.6/34.0 |
M1 | 99.6 | 99.6/99.6 | 99.6/99.6 | 99.6/99.6 | 98.8/98.6 |
M2 | 99.8 | 99.9/99.9 | 99.8/99.8 | 99.5/99.3 | 89.4/47.0 |
OC1 | 99.6 | 87.4/88.7 | 85.1/80.1 | 51.5/68.9 | 66.7/63.3 |
OC2 | 99.8 | 99.9/99.4 | 96.1/96.3 | 78.6/66.1 | 23.3/16.0 |
SRS Radiation Wavelength | BaWO4 | SrMoO4 | SrWO4 |
---|---|---|---|
λ1–2 = [λp−1 − (ν1 − ν2)]−1 | 1135 nm | 1130 nm | 1133 nm ** |
λ1 = [λp−1 − (ν1)]−1 | 1179 nm * | 1174 nm * | 1178 nm * |
λ1+2 = [λp−1 − (ν1 + ν2)]−1 | 1227 nm * | 1220 nm * | 1227 nm * |
λ1+1–2 = [λp−1 − (ν1 + ν1 − ν2)]−1 | 1268 nm | 1256 nm | 1265 nm ** |
λ1+2+2 = [λp−1 − (ν1 + ν2+ ν2)]−1 | 1279 nm | 1271 nm | 1279 nm * |
λ1+1 = [λp−1 − (ν1 + ν1)]−1 | 1323 nm * | 1310 nm * | 1321 nm * |
λ1+1+2 = [λp−1 − (ν1 + ν1 + ν2)]−1 | 1383 nm | 1369 nm | 1383 nm ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, M.; Smetanin, S.N.; Jelínek, M.; Vyhlídal, D.; Shukshin, V.E.; Ivleva, L.I.; Dunaeva, E.E.; Voronina, I.S.; Zverev, P.G.; Kubeček, V. Stimulated Raman Scattering in Alkali-Earth Tungstate and Molybdate Crystals at Both Stretching and Bending Raman Modes under Synchronous Picosecond Pumping with Multiple Pulse Shortening Down to 1 ps. Crystals 2019, 9, 167. https://doi.org/10.3390/cryst9030167
Frank M, Smetanin SN, Jelínek M, Vyhlídal D, Shukshin VE, Ivleva LI, Dunaeva EE, Voronina IS, Zverev PG, Kubeček V. Stimulated Raman Scattering in Alkali-Earth Tungstate and Molybdate Crystals at Both Stretching and Bending Raman Modes under Synchronous Picosecond Pumping with Multiple Pulse Shortening Down to 1 ps. Crystals. 2019; 9(3):167. https://doi.org/10.3390/cryst9030167
Chicago/Turabian StyleFrank, Milan, Sergei N. Smetanin, Michal Jelínek, David Vyhlídal, Vladislav E. Shukshin, Lyudmila I. Ivleva, Elizaveta E. Dunaeva, Irina S. Voronina, Petr G. Zverev, and Václav Kubeček. 2019. "Stimulated Raman Scattering in Alkali-Earth Tungstate and Molybdate Crystals at Both Stretching and Bending Raman Modes under Synchronous Picosecond Pumping with Multiple Pulse Shortening Down to 1 ps" Crystals 9, no. 3: 167. https://doi.org/10.3390/cryst9030167
APA StyleFrank, M., Smetanin, S. N., Jelínek, M., Vyhlídal, D., Shukshin, V. E., Ivleva, L. I., Dunaeva, E. E., Voronina, I. S., Zverev, P. G., & Kubeček, V. (2019). Stimulated Raman Scattering in Alkali-Earth Tungstate and Molybdate Crystals at Both Stretching and Bending Raman Modes under Synchronous Picosecond Pumping with Multiple Pulse Shortening Down to 1 ps. Crystals, 9(3), 167. https://doi.org/10.3390/cryst9030167