Impact of Weak Nanoparticle Induced Disorder on Nematic Ordering
Abstract
:1. Introduction
2. Results
2.1. Non-Monotonous Dependence
2.2. Impact of NPs on Average Nematic Ordering
3. Conclusions
4. Methods
4.1. Semi-Microscopic Modeling
4.2. Mesoscopic Modeling
Author Contributions
Funding
Conflicts of Interest
References
- Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science 2006, 314, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Lavrentovich, O.D.; Kleman, M. Soft Matter Physics: An Introduction; Kleman, M., Lavrentovich, O.D., Eds.; Partially Ordered Systems; Springer: New York, NY, USA, 2004; ISBN 978-0-387-95267-3. [Google Scholar]
- Palffy-Muhoray, P. The diverse world of liquid crystals. Phys. Today 2007, 60, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Iglič, A.; Kralj-Iglič, V.; Drobne, D. Nanostructures in Biological Systems: Theory and Applications; Pan Stanford: Singapore, 2015; ISBN 9789814267205. [Google Scholar]
- Crawford, G.P.; Žumer, S. Liquid Crystals In Complex Geometries: Formed by Polymer and Porous Networks; Crawford, G.P., Žumer, S., Eds.; Taylor and Francis: New York, NY, USA, 1996; ISBN 0-7484-0464-3. [Google Scholar]
- Iannacchione, G.S.; Garland, C.W.; Mang, J.T.; Rieker, T.P. Calorimetric and small angle x-ray scattering study of phase transitions in octylcyanobiphenyl-aerosil dispersions. Phys. Rev. E 1998, 58, 5966–5981. [Google Scholar] [CrossRef]
- Kurik, M.V.; Lavrentovich, O.D. Defects in liquid crystals: Homotopy theory and experimental studies. Sov. Phys. Uspekhi 1988, 31, 196–224. [Google Scholar] [CrossRef]
- Bellini, T.; Radzhihovsky, L.; Toner, J.; Clark, N.A. Universality and Scaling in the Disordering of a Smectic Liquid Crystal. Science 2001, 294, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Bellini, T.; Buscaglia, M.; Chiccoli, C.; Mantegazza, F.; Pasini, P.; Zannoni, C. Nematics with Quenched Disorder: How Long Will It Take to Heal? Phys. Rev. Lett. 2002, 88, 245506. [Google Scholar] [CrossRef] [PubMed]
- León, N.; Korb, J.-P.; Bonalde, I.; Levitz, P. Universal Nuclear Spin Relaxation and Long-Range Order in Nematics Strongly Confined in Mass Fractal Silica Gels. Phys. Rev. Lett. 2004, 92, 195504. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Leheny, R.L.; Birgeneau, R.J.; Gallani, J.-L.; Garland, C.W.; Iannacchione, G.S. Hydrogen-bonded silica gels dispersed in a smectic liquid crystal: A random field XY system. Phys. Rev. E 2002, 65, 050703. [Google Scholar] [CrossRef] [PubMed]
- Imry, Y.; Ma, S. Random-Field Instability of the Ordered State of Continuous Symmetry. Phys. Rev. Lett. 1975, 35, 1399–1401. [Google Scholar] [CrossRef]
- Chakrabarti, J. Simulation Evidence of Critical Behavior of Isotropic-Nematic Phase Transition in a Porous Medium. Phys. Rev. Lett. 1998, 81, 385–388. [Google Scholar] [CrossRef]
- Ranjkesh, A.; Ambrožič, M.; Kralj, S.; Sluckin, T.J. Computational studies of history dependence in nematic liquid crystals in random environments. Phys. Rev. E 2014, 89, 022504. [Google Scholar] [CrossRef]
- Larkin, A.I. Effect of inhomogeneities on the structure of the mixed state of superconductors. Sov. Phys. JETP 1970, 31, 784. [Google Scholar]
- Feldman, D.E. Quasi-long range order in glass states of impure liquid crystals, magnets, and superconductors. Int. J. Mod. Phys. B 2001, 15, 2945–2976. [Google Scholar] [CrossRef]
- Rzoska, S.J.; Starzonek, S.; Drozd-Rzoska, A.; Czupryński, K.; Chmiel, K.; Gaura, G.; Michulec, A.; Szczypek, B.; Walas, W. Impact of BaTiO3 nanoparticles on pretransitional effects in liquid crystalline dodecylcyanobiphenyl. Phys. Rev. E 2016, 93, 020701. [Google Scholar] [CrossRef] [PubMed]
- Starzonek, S.; Rzoska, S.J.; Drozd-Rzoska, A.; Czupryński, K.; Kralj, S. Impact of ferroelectric and superparaelectric nanoparticles on phase transitions and dynamics in nematic liquid crystals. Phys. Rev. E 2017, 96, 022705. [Google Scholar] [CrossRef] [PubMed]
- Kyrou, C.; Kralj, S.; Panagopoulou, M.; Raptis, Y.; Nounesis, G.; Lelidis, I. Impact of spherical nanoparticles on nematic order parameters. Phys. Rev. E 2018, 97, 042701. [Google Scholar] [CrossRef] [Green Version]
- Lebwohl, P.A.; Lasher, G. Nematic-Liquid-Crystal Order—A Monte Carlo Calculation. Phys. Rev. A 1972, 6, 426–429. [Google Scholar] [CrossRef]
- Buček, S.; Kralj, S.; Sluckin, T.J. Hysteresis in Two-Dimensional Liquid Crystal Models. Adv. Condens. Matter Phys. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Luckhurst, G.R.; Sluckin, T.J.; Zewdie, H.B. Computer simulation studies of anisotropic systems. Mol. Phys. 1986, 59, 657–678. [Google Scholar] [CrossRef]
- Ambrožič, M.; Kralj, S. Field percolation-switching in soft ternary anisotropic system. Phys. A Stat. Mech. its Appl. 2019, 520, 11–25. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: Abingdon, UK, 1985; ISBN 978-0-203-29042-2. [Google Scholar]
- Popa-Nita, V.; van der Schoot, P.; Kralj, S. Influence of a random field on particle fractionation and solidification in liquid-crystal colloid mixtures. Eur. Phys. J. E 2006, 21, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Popa-Nita, V. Statics and kinetics at the nematic-isotropic interface in porous media. Eur. Phys. J. B 1999, 12, 83–90. [Google Scholar] [CrossRef]
- Lopatina, L.M.; Selinger, J.V. Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals. Phys. Rev. E 2011, 84, 041703. [Google Scholar] [CrossRef] [PubMed]
- Cordoyiannis, G.; Kurihara, L.K.; Martinez-Miranda, L.J.; Glorieux, C.; Thoen, J. Effects of magnetic nanoparticles with different surface coating on the phase transitions of octylcyanobiphenyl liquid crystal. Phys. Rev. E 2009, 79, 011702. [Google Scholar] [CrossRef] [PubMed]
- Cleaver, D.J.; Kralj, S.; Sluckin, T.J.; Allen, M.P. The random anisotropy nematic spin model. In Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks; Crawford, G.P., Žumer, S., Eds.; Taylor and Francis: New York, NY, USA, 1996; pp. 467–481. ISBN 0-7484-0464-3. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Črešnar, D.; Kyrou, C.; Lelidis, I.; Drozd-Rzoska, A.; Starzonek, S.; Rzoska, S.J.; Kutnjak, Z.; Kralj, S. Impact of Weak Nanoparticle Induced Disorder on Nematic Ordering. Crystals 2019, 9, 171. https://doi.org/10.3390/cryst9030171
Črešnar D, Kyrou C, Lelidis I, Drozd-Rzoska A, Starzonek S, Rzoska SJ, Kutnjak Z, Kralj S. Impact of Weak Nanoparticle Induced Disorder on Nematic Ordering. Crystals. 2019; 9(3):171. https://doi.org/10.3390/cryst9030171
Chicago/Turabian StyleČrešnar, Dejvid, Christina Kyrou, Ioannis Lelidis, Aleksandra Drozd-Rzoska, Szymon Starzonek, Sylwester Janusz Rzoska, Zdravko Kutnjak, and Samo Kralj. 2019. "Impact of Weak Nanoparticle Induced Disorder on Nematic Ordering" Crystals 9, no. 3: 171. https://doi.org/10.3390/cryst9030171
APA StyleČrešnar, D., Kyrou, C., Lelidis, I., Drozd-Rzoska, A., Starzonek, S., Rzoska, S. J., Kutnjak, Z., & Kralj, S. (2019). Impact of Weak Nanoparticle Induced Disorder on Nematic Ordering. Crystals, 9(3), 171. https://doi.org/10.3390/cryst9030171