Single-Frequency BaWO4 Raman MOPA at 1178 nm with 100-ns Pulse Pump
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zverev, P.G.; Basiev, T.T.; Sobol, A.A.; Skornyakov, V.V.; Ivleva, L.I.; Polozkov, N.M.; Osiko, V.V. Stimulated Raman scattering in alkaline-earth tungstate crystals. Quantum Electron. 2000, 30, 55–59. [Google Scholar] [CrossRef]
- Rong, H.; Jones, R.; Liu, A.; Cohen, O.; Hak, D.; Fang, A.; Pannicia, M. A continuous-wave Raman silicon laser. Nature 2005, 433, 725–728. [Google Scholar] [CrossRef] [Green Version]
- Piper, J.A.; Pask, H.M. Crystalline Raman lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 692–704. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wang, Q.P.; Zhang, X.Y.; Zhang, S.S.; Chang, J.; Fan, S.Z.; Sun, W.J.; Jin, G.F.; Tao, X.T.; Sun, Y.X.; et al. Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm. Opt. Lett. 2009, 34, 2183–2185. [Google Scholar] [CrossRef]
- Williams, R.J.; Nold, J.; Strecker, M.; Kitzler, O.; McKay, A.; Schreiber, T.; Mildren, R.P. Efficient Raman frequency conversion of high-power fiber lasers in diamond. Laser Photonics Rev. 2015, 9, 405–411. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Z.; Zhu, S.; Yin, H.; Chen, Z.; Zhang, G.; Chen, W. YVO4 Raman laser pumped by a passively Q-switched Yb:YAG laser. Opt. Express 2017, 25, 14033–14042. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhu, H.Y.; Chen, S.M.; Duan, Y.M.; Xu, X.R.; Xu, C.W.; Tang, D.Y. Yellow, lime and green emission selectable by BBO angle tuning in Q-switched Nd:YVO4 self-Raman laser. Laser Phys. Lett. 2018, 15, 075803. [Google Scholar] [CrossRef]
- Duan, Y.M.; Zhang, J.; Zhu, H.Y.; Zhang, Y.C.; Xu, C.W.; Wang, H.Y.; Fan, D.Y. Compact passively Q-switched RbTiOPO4 cascaded Raman operation. Opt. Lett. 2018, 43, 4550–4553. [Google Scholar] [CrossRef]
- Frank, M.; Smetanin, S.N.; Jelínek, M.; Vyhlídal, D.; Ivleva, L.I.; Zverev, P.G.; Kubeček, V. Highly efficient picosecond all-solid-state Raman laser at 1179 and 1227 nm on single and combined Raman lines in a BaWO4 crystal. Opt. Lett. 2018, 43, 2527–2530. [Google Scholar] [CrossRef]
- Chen, Y.F.; Pan, Y.Y.; Liu, Y.C.; Cheng, H.P.; Tsou, C.H.; Liang, H.C. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal. Opt. Express 2019, 27, 2029–2035. [Google Scholar] [CrossRef]
- Feng, Y.; Taylor, L.R.; Calia, D.B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star. Opt. Express 2009, 17, 19021–19026. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Jiang, H.; Qi, Y.; He, B.; Zhou, J.; Gu, X.; Feng, Y. Kilowatt ytterbium-Raman fiber laser. Opt. Express 2014, 22, 18483–18489. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, H.; Cui, S.Z.; Hu, J.; Feng, Y. Versatile Raman fiber laser for sodium laser guide star. Laser Photonics Rev. 2014, 8, 889–895. [Google Scholar] [CrossRef]
- Oliver, L.; Han, J.R.; Haro, F.; Hans, J.E. Barium nitrate Raman laser at 1.599 μm for CO2 detection. Proc. SPIE 2012, 8677, 86771B1-7. [Google Scholar] [CrossRef]
- Grady, J.K.; Bruce, W.B.; Mulugeta, P.; Jeffrey, Y.B.; Farzin, A.; Jirong, Y.; Richard, E.D.; Syed, I.; Stephanie, V.; Michael, J.K.; et al. Coherent differential absorption lidar measurements of CO2. Appl. Opt. 2004, 43, 5092–5099. [Google Scholar] [CrossRef]
- Raghunathan, V.; Borlaug, D.; Rice, R.R.; Jalali, B. Demonstration of a mid-infrared silicon Raman amplifier. Opt. Express 2007, 15, 14355–14362. [Google Scholar] [CrossRef] [PubMed]
- Lisinetskii, V.A.; Orlovich, V.A.; Rhee, H.; Wang, X.; Eichler, H.J. Efficient Raman amplification of low divergent radiation in barium nitrate crystal. Appl. Phys. B 2008, 91, 299–303. [Google Scholar] [CrossRef]
- Yakovlev, V.V.; Petrov, G.I.; Zhang, H.F.; Noojin, G.D.; Denton, M.L.; Thomas, R.J.; Scully, M.O. Stimulated Raman scattering: Old physics, new applications. J. Mod. Opt. 2009, 56, 1970–1973. [Google Scholar] [CrossRef] [PubMed]
- Kulagin, O.V.; Gorbunov, I.A.; Sergeev, A.M.; Valley, M. Picosecond Raman compression laser at 1530 nm with aberration compensation. Opt. Lett. 2103, 38, 3237–3240. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cong, Z.H.; Liu, Z.J.; Zhang, X.Y.; Wang, Q.P.; Wei, W.; Li, L.; Zhang, Y.G.; Wang, W.T.; Wu, Z.G.; et al. Theoretical and experimental investigation of an efficient pulsed barium tungstate Raman amplifier at 1180 nm. Opt. Commun. 2014, 313, 80–84. [Google Scholar] [CrossRef]
- Men, S.J.; Liu, Z.J.; Cong, Z.H.; Liu, Y.; Xia, J.B.; Zhang, S.S.; Cheng, W.Y.; Li, Y.F.; Tu, C.Y.; Zhang, X.Y. Single-frequency CaWO4 Raman amplifier at 1178 nm. Opt. Lett. 2015, 40, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Zhang, S.S.; Cong, Z.H.; Huang, Q.J.; Guan, C.; Wu, Q.W.; Chen, H.; Bai, F.; Liu, Z.J. Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser. Laser Phys. Lett. 2018, 15, 035001. [Google Scholar] [CrossRef]
- Heard, H.G. Laser Parameter Measurements Handbook, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1968; ISBN 9780471366652. [Google Scholar]
No. | Radius of Curvature | Coatings | Incident Angle |
---|---|---|---|
M1 | ∞-∞ | R > 99%@1062 nm | 45° |
M2 | ∞-∞ | T > 98%@1062 nm & R > 99.5%@1178 nm | 0° |
M3 | ∞-1000 mm (concave) | R > 99.8%@1062 nm & R = 75%@1178 nm | 0° |
M4 | ∞-∞ | R > 99%@1178 nm | 45° |
M5 | ∞-∞ | R = 75%@1062 nm | 20° |
M6 | ∞-∞ | T > 98%@1062 nm & R > 99%@1178 nm | 45° |
M7&M9 | ∞-∞ | T > 99%@1062 nm & R > 99%@1178 nm | 15° |
M8 | ∞-∞ | R > 99%@1062 nm | 20° |
M10 | ∞-∞ | R > 99.8%@1062 nm & T > 99%@1178 nm | 0° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Rao, H.; Cong, Z.; Xue, F.; Gao, X.; Wang, S.; Tan, W.; Guan, C.; Zhang, X. Single-Frequency BaWO4 Raman MOPA at 1178 nm with 100-ns Pulse Pump. Crystals 2019, 9, 185. https://doi.org/10.3390/cryst9040185
Liu Z, Rao H, Cong Z, Xue F, Gao X, Wang S, Tan W, Guan C, Zhang X. Single-Frequency BaWO4 Raman MOPA at 1178 nm with 100-ns Pulse Pump. Crystals. 2019; 9(4):185. https://doi.org/10.3390/cryst9040185
Chicago/Turabian StyleLiu, Zhaojun, Han Rao, Zhenhua Cong, Feng Xue, Xibao Gao, Shang Wang, Wei Tan, Chen Guan, and Xingyu Zhang. 2019. "Single-Frequency BaWO4 Raman MOPA at 1178 nm with 100-ns Pulse Pump" Crystals 9, no. 4: 185. https://doi.org/10.3390/cryst9040185
APA StyleLiu, Z., Rao, H., Cong, Z., Xue, F., Gao, X., Wang, S., Tan, W., Guan, C., & Zhang, X. (2019). Single-Frequency BaWO4 Raman MOPA at 1178 nm with 100-ns Pulse Pump. Crystals, 9(4), 185. https://doi.org/10.3390/cryst9040185