Hydrogenation Properties of LnAl2 (Ln = La, Eu, Yb), LaGa2, LaSi2 and the Crystal Structure of LaGa2H0.71(2)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hydrogenation Reactions
3.2. Crystal Structure of LaGa2D0.71(2)
3.3. Solid-State NMR
3.4. Density Funtional Theory (DFT) Calcalations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zintl, E.; Kaiser, H. Über die Fähigkeit der Elemente zur Bildung negativer Ionen. Z. Anorg. Allg. Chem. 1933, 211, 113–131. [Google Scholar] [CrossRef]
- Schäfer, H.; Eisenmann, B.; Müller, W. Zintl-Phasen: Übergangsformen zwischen Metall- und Ionenbindung. Angew. Chem. 1973, 85, 742–760. [Google Scholar] [CrossRef]
- Nesper, R. Chemische Bindungen—Intermetallische Verbindungen. Angew. Chem. 1991, 103, 805–834. [Google Scholar] [CrossRef]
- Kauzlarich, S.M. Chemistry, Structure and Bonding of Zintl Phases and Ions; Wiley-VCH: Weinheim, Germany, 1996; ISBN 978-0-471-18619-9. [Google Scholar]
- Nesper, R. The Zintl-Klemm Concept—A Historical Survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Corbett, J.D. Polyanionic Clusters and Networks of the Early p-Element Metals in the Solid State: Beyond the Zintl Boundary. Angew. Chem. Int. Ed. 2000, 39, 670–690. [Google Scholar] [CrossRef]
- Akasaka, M.; Iida, T.; Matsumoto, A.; Yamanaka, K.; Takanashi, Y.; Imai, T.; Hamada, N. The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method. J. Appl. Phys. 2008, 104, 013703. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Pecharsky, V.K. Magnetocaloric Materials. Annu. Rev. Mater. Sci. 2000, 30, 387–429. [Google Scholar] [CrossRef]
- Toh, K.; Saito, T.; Suemasu, T. Optical Absorption Properties of BaSi2 Epitaxial Films Grown on a Transparent Silicon-on-Insulator Substrate Using Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 2011, 50, 068001. [Google Scholar] [CrossRef]
- Simon, A. Oxidation durch Wasserstoff in der Chemie und Physik der Seltenerdmetalle. Angew. Chem. 2012, 124, 4354–4361. [Google Scholar] [CrossRef]
- Ångstrom, J.; Johansson, R.; Sarkar, T.; Sørby, M.H.; Zlotea, C.; Andersson, M.S.; Nordblad, P.; Scheicher, R.H.; Häussermann, U.; Sahlberg, M. Hydrogenation-Induced Structure and Property Changes in the Rare- Earth Metal Gallide NdGa: Evolution of a [GaH]2− Polyanion Containing Peierls-like Ga−H Chains. Inorg. Chem. 2016, 55, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Häußermann, U. Coexistence of hydrogen and polyanions in multinary main group element hydrides. Z. Kristallogr. 2008, 223, 628–635. [Google Scholar] [CrossRef]
- Häussermann, U.; Kranak, V.F.; Puhakainen, K. Hydrogenous Zintl Phases: Interstitial Versus Polyanionic Hydrides. In Zintl Phases. Structure and Bonding; Fässler, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 139, ISBN 978-3-642-21150-8. [Google Scholar]
- Auer, H.; Guehne, R.; Bertmer, M.; Weber, S.; Wenderoth, P.; Hansen, T.C.; Haase, J.; Kohlmann, H. Hydrides of Alkaline Earth−Tetrel (AeTt) Zintl Phases: Covalent Tt−H Bonds from Silicon to Tin. Inorg. Chem. 2017, 56, 1061–1071. [Google Scholar] [CrossRef]
- Auer, H.; Schlegel, R.; Oeckler, O.; Kohlmann, H. Structural and Electronic Flexibility in Hydrides of Zintl Phases with Tetrel-Hydrogen and Tetrel-Tetrel Bonds. Angew. Chem. Int. Ed. 2017, 56, 12344–12347. [Google Scholar] [CrossRef] [PubMed]
- Kranak, V.F.; Benson, D.E.; Wollmann, L.; Mesgar, M.; Shafeie, S.; Grins, J.; Häussermann, U. Hydrogenous Zintl Phase Ba3Si4Hx (x = 1–2): Transforming Si4 “Butterfly” Anions into Tetrahedral Moieties. Inorg. Chem. 2014, 53, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Laves, F. Die Kristallstrukturen von CaGa2, LaGa2 und CeGa2. Naturwissenschaften 1943, 11–13, 145. [Google Scholar] [CrossRef]
- Harima, H.; Yanase, Y. Electronic Structure and Fermi Surface of LaGa2. J. Phys. Soc. Jpn. 1991, 60, 2718–2723. [Google Scholar] [CrossRef]
- Leon-Escamilla, E.A.; Corbett, J.D. Hydrogen stabilization: Nine isotypic orthorhombic A5Pn3H phases (among A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = Sb, Bi) formerly described as binary β-Yb5Sb3-type compounds. J. Alloys Compd. 1998, 265, 104–114. [Google Scholar] [CrossRef]
- Leon-Escamilla, E.A.; Corbett, J.D. Hydrogen in Polar Intermetallics. Binary Pnictides of Divalent Metals with Mn5Si3-type Structures and Their Isotypic Ternary Hydride Solutions. Chem. Mater. 2006, 18, 4782–4792. [Google Scholar] [CrossRef]
- Leon-Escamilla, E.A.; Stassi, P.D.C.; D, J. Corbett, Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H∼1 by powder neutron or single crystal X-ray diffraction. Solid State Chem. 2010, 183, 114–119. [Google Scholar] [CrossRef]
- Gingl, F.; Vogt, T.; Akiba, E. Trigonal SrAl2H2: The first Zintl phase hydride. J. Alloys Compd. 2000, 306, 127–132. [Google Scholar] [CrossRef]
- Björling, T.; Noréus, D.; Jansson, K.; Andersson, M.; Leonova, E.; Edén, M.; Hålenius, U.; Häussermann, U. SrAlSiH: A Polyanionic Semiconductor Hydride. Angew. Chem. Int. Ed. 2005, 44, 7269–7273. [Google Scholar] [CrossRef] [PubMed]
- Werwein, A.; Auer, H.; Kuske, L.; Kohlmann, H. From Metallic LnTt (Ln = La, Nd; Tt = Si, Ge, Sn) to Electron-precise Zintl Phase Hydrides LnTtH. Z. Anorg. Allg. Chem. 2018, 644, 1532–1539. [Google Scholar] [CrossRef]
- Brauer, G.; Haag, H. Über Darstellung und Kristallstruktur der Disilicide von einigen Metallen der Seltenen Erden. Z. Anorg. Allg. Chem. 1952, 267, 198–212. [Google Scholar] [CrossRef]
- Bohmhammel, K.; Henneberg, E. Hydriding and dehydriding behavior of lanthanum silicides. Solid State Ion. 2001, 141–142, 599–602. [Google Scholar] [CrossRef]
- Harris, I.R.; Mansey, R.C.; Raynor, G.V. Rare earth intermediate phases: III. The cubic laves phases formed with aluminium and cobalt. J. Less-Common Met. 1965, 9, 270–280. [Google Scholar] [CrossRef]
- Franz, A.; Hoser, A. E9: The Fine Resolution Powder Diffractometer (FIREPOD) at BER II. J. Large-Scale Res. Facil. 2017, 3, A103. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Bruker AXS, TOPASc Version 5. Available online: www.bruker-axs.com (accessed on 28 March 2019).
- Rodrıguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Rodrıguez-Carvajal, J. FullProf.2k, Version 5.30—Mar2012-ILL JRC. Institut Laue-Langevin: Grenoble, France, 2018. [Google Scholar]
- VESTA—Visualisation for Electronic and Structural Analysis; Version 3.3.1; Koichi Momma and Fujio Izumi: Tokyo, Japan, 2018.
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Abinit v. 8.8.2, GNU General Public License. Available online: http://www.abinit.org (accessed on 28 March 2019).
- Gonze, X.; Beuken, J.-M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.-M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; et al. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 2002, 25, 478–492. [Google Scholar] [CrossRef]
- Gonze, X. A brief introduction to the ABINIT software package. Z. Kristallogr. Cryst. Mater. 2005, 220, 558–562. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; et al. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 2009, 180, 2582–2615. [Google Scholar] [CrossRef]
- Gonze, X.; Jollet, F.; Araujo, F.A.; Adams, D.; Amadon, B.; Applencourt, T.; Audouze, C.; Beuken, J.-M.; Bieder, J.; Bokhanchuk, A.; et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 2016, 205, 106–131. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- JTH PAW Atomic Datasets, Version 1.0. Available online: https://www.abinit.org/downloads/PAW2 (accessed on 28 March 2019).
- Jollet, F.; Torrent, M.; Holzwarth, N. Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format. Comput. Phys. Commun. 2014, 185, 1246–1254. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Stadelmann, P.A. EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 1987, 21, 131–146. [Google Scholar] [CrossRef]
- JEMS Version 4.4631U. JEMS-SAAS: Saas-Fee, Switzerland, 2016.
- Villars, P.; Calvert, L.D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases 1; American Society for Metals: Metals Park, OH, USA, 1985; ISBN 0-87170-217-7. [Google Scholar]
- Villars, P.; Calvert, L.D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases 2; American Society for Metals: Metals Park, OH, USA, 1985; ISBN 0-87170-217-7. [Google Scholar]
- Shashikalaa, K.; Sathyamoorthy, A.; Raj, P.; Dhar, S.K.; Malik, S.K. Structure and magnetic properties of CeGa2D0.6 system. J. Alloys Compd. 2007, 436, 19–22. [Google Scholar] [CrossRef]
- Andresen, A.F.; Otnes, K.; Maeland, A.J. Neutron scattering investigations of Be2ZrH1.5 and Be2ZrD1.5. J. Less-Common Met. 1983, 89, 201–204. [Google Scholar] [CrossRef]
- Bronger, W.; Chi-Chien, S.; Müller, P. Die Kristallstruktur von Bariumhydrid, ermittelt über Neutronenbeugungsexperimente an BaD2. Z. Anorg. Allg. Chem. 1987, 545, 69–74. [Google Scholar] [CrossRef]
- Brese, N.E.; O’Keeffe, M.; von Dreele, R.B. Synthesis and crystal structure of SrD2 and SrND and bond valence parameters for hydrides. J. Solid State Chem. 1990, 88, 571–576. [Google Scholar] [CrossRef]
- Denys, R.V.; Riabov, A.B.; Yartys, V.A.; Delaplane, R.G.; Sato, M. Hydrogen storage properties and structure of La1−xMgx(Ni1−yMny)3 intermetallics and their hydrides. J. Alloys Compd. 2007, 446–447, 166–172. [Google Scholar] [CrossRef]
- Harms, W.; Wendorff, M.; Röhr, C. Mixed Alkaline Earth Trielides AIIM1IIIxM2III2−x (AII = Ca, Sr, Ba; MIII = Al, Ga, In). A Structural and Theoretical Study. Z. Naturforsch. 2006, 62b, 177–194. [Google Scholar] [CrossRef]
- Björling, T.; Noréus, D.; Häussermannm, U. Polyanionic Hydrides from Polar Intermetallics AeE2 (Ae = Ca, Sr, Ba; E = Al, Ga, In). J. Am. Chem. Soc. 2006, 128, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.J.; Wu, Y.; Kranak, V.F.; Newman, N.; Garcia-Garcia, A.R.F.J.; Häussermann, U. Structural properties and superconductivity in the ternary intermetallic compounds MAB (M = Ca, Sr, Ba; A = Al, Ga, In; B = Si, Ge, Sn). Phys. Rev. B 2009, 80, 064514. [Google Scholar] [CrossRef]
- Evans, M.J.; Holland, G.P.; Garcia-Garcia, F.J.; Häussermann, U. Polyanionic gallium hydrides from AlB2-type precursors AeGaE (Ae = Ca, Sr, Ba; E = Si, Ge, Sn). J. Am. Chem. Soc. 2008, 130, 12139–12147. [Google Scholar] [CrossRef] [PubMed]
- Van Vleck, J.H. The Dipolar Broadening of Magnetic Resonance Lines in Crystals. Phys. Rev. 1948, 74, 1168–1183. [Google Scholar] [CrossRef]
- Lee, M.H.; Björling, T.; Hauback, B.C.; Utsumi, T.; Moser, D.; Bull, D.; Noréus, D.; Sankey, O.F.; Häussermann, U. Crystal structure, electronic structure, and vibrational properties of MAlSiH (M = Ca, Sr, Ba): Hydrogenation-induced semiconductors from the AlB2-type alloys MAlSi. Phys. Rev. B 2008, 78, 195209. [Google Scholar] [CrossRef]
Atom | Site | x | y | z | Biso/Å2 | s.o.f. |
---|---|---|---|---|---|---|
La1 | 1a | 0 | 0 | 0 | 0.64(6) | 1 |
La2 | 1b | 0 | 0 | 1/2 | Biso(La1) | 1 |
Ga | 4h | 2/3 | 1/3 | 0.2415(3) | 0.78(6) | 1 |
D1 | 2c | 2/3 | 1/3 | 1/2 | 3.4(2) | 0.672(10) |
D2 | 2d | 2/3 | 1/3 | 0 | Biso(D1) | 0.045(8) |
Zintl Phase | d(X-X)/Å | c/a | Deuteride | d(X-X)/Å | Δd/d | d(M-D)/Å | d(Ga-D)/Å | c/a |
---|---|---|---|---|---|---|---|---|
SrGa2 [55] | 2.5122(11) | 1.07 | SrGa2D2 [56] | 2.5569(10) | 1.8% | 2.5855(9) | 1.686(6) | 1.07 |
BaGa2 [55] | 2.5511(11) | 1.14 | BaGa2D2 [56] | 2.6333(6) | 3.2% | 2.6834(6) | 1.689(3) | 1.08 |
SrGaGe [57] | 2.46632(6) | 1.10 | SrGaGeD [58] | 2.5075(4) | 1.7% | 2.4824(3) | 1.7248(15) | 1.17 |
BaGaGe [57] | 2.50287(6) | 1.17 | BaGaGeD [58] | 2.5552(4) | 2.1% | 2.5878(4) | 1.7115(8) | 1.20 |
LaGa2 | 2.48824(10) | 1.02 | LaGa2D0.71(2) | 2.49918(18) | 0.4% | 2.49918(18) | 2.099(3) | 1 |
2.247(3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werwein, A.; Benndorf, C.; Bertmer, M.; Franz, A.; Oeckler, O.; Kohlmann, H. Hydrogenation Properties of LnAl2 (Ln = La, Eu, Yb), LaGa2, LaSi2 and the Crystal Structure of LaGa2H0.71(2). Crystals 2019, 9, 193. https://doi.org/10.3390/cryst9040193
Werwein A, Benndorf C, Bertmer M, Franz A, Oeckler O, Kohlmann H. Hydrogenation Properties of LnAl2 (Ln = La, Eu, Yb), LaGa2, LaSi2 and the Crystal Structure of LaGa2H0.71(2). Crystals. 2019; 9(4):193. https://doi.org/10.3390/cryst9040193
Chicago/Turabian StyleWerwein, Anton, Christopher Benndorf, Marko Bertmer, Alexandra Franz, Oliver Oeckler, and Holger Kohlmann. 2019. "Hydrogenation Properties of LnAl2 (Ln = La, Eu, Yb), LaGa2, LaSi2 and the Crystal Structure of LaGa2H0.71(2)" Crystals 9, no. 4: 193. https://doi.org/10.3390/cryst9040193
APA StyleWerwein, A., Benndorf, C., Bertmer, M., Franz, A., Oeckler, O., & Kohlmann, H. (2019). Hydrogenation Properties of LnAl2 (Ln = La, Eu, Yb), LaGa2, LaSi2 and the Crystal Structure of LaGa2H0.71(2). Crystals, 9(4), 193. https://doi.org/10.3390/cryst9040193