Crystal Growth of Quantum Magnets in the Rare-Earth Pyrosilicate Family R2Si2O7 (R = Yb, Er) Using the Optical Floating Zone Method
Abstract
:1. Introduction
2. Crystal Growth Using Optical Floating Zone Method
3. Powder X-ray Diffraction and Laue
4. Specific Heat of C-YbSiO and D-ErSiO
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FZ | Floating zone |
TSFZ | Traveling solvent floating zone |
CCD | Charge coupled device |
References
- Felsche, J. The crystal chemistry of the rare-earth silicates. In Rare Earths; Springer: New York, NY, USA, 1973; pp. 99–197. [Google Scholar]
- Feng, H.; Ding, D.; Li, H.; Lu, S.; Pan, S.; Chen, X.; Ren, G. Growth and luminescence characteristics of cerium-doped yttrium pyrosilicate single crystal. J. Alloys Compd. 2010, 489, 645–649. [Google Scholar] [CrossRef]
- Pauwels, D.; Le Masson, N.; Viana, B.; Kahn-Harari, A.; van Loef, E.; Dorenbos, P.; van Eijk, C. A novel inorganic scintillator: Lu2Si2O7: Ce3+. IEEE Trans. Nucl. Sci. 2000, 47, 1787–1790. [Google Scholar] [CrossRef]
- Bretheau-Raynal, F.; Tercier, N.; Blanzat, B.; Drifford, M. Synthesis and spectroscopic study of lutetium pyrosilicate single crystals doped with trivalent europium. Mater. Res. Bull. 1980, 15, 639–646. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Wang, J.; Wu, Z.; Lv, X.; Wang, J. Material-genome perspective towards tunable thermal expansion of rare-earth di-silicates. J. Eur. Ceram. Soc. 2018, 38, 3547–3554. [Google Scholar] [CrossRef]
- Maqsood, A.; Wanklyn, B.M.; Garton, G. Flux growth of polymorphic rare-earth disilicates, R2Si2O7 (R = Tm, Er, Ho, Dy). J. Cryst. Growth 1979, 46, 671–680. [Google Scholar] [CrossRef]
- Maqsood, A. Single crystal growth of polymorphic Er2Si2O7 ceramics. J. Mater. Sci. Lett. 2000, 19, 711–712. [Google Scholar] [CrossRef]
- Maqsood, A. Magnetic properties of D-Er2Si2O7 at low temperatures. J. Mater. Sci. 1981, 16, 2198–2204. [Google Scholar] [CrossRef]
- Maqsood, A. Phase transformations in Er2Si2O7 ceramics. J. Mater. Sci. Lett. 1997, 16, 837–840. [Google Scholar] [CrossRef]
- Wang, S.B.; Lu, Y.R.; Chen, Y.X. Synthesis of single-phase β-Yb2Si2O7 and properties of its sintered bulk. Int. J. Appl. Ceram. Technol. 2015, 12, 1140–1147. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, F.; Sun, Y.; Zhou, Y. Synthesis and characterization of β-Yb2Si2O7 powders. Ceram. Int. 2013, 39, 5805–5811. [Google Scholar] [CrossRef]
- Horiai, T.; Kurosawa, S.; Murakami, R.; Pejchal, J.; Yamaji, A.; Shoji, Y.; Chani, V.I.; Ohashi, Y.; Kamada, K.; Yokota, Y.; et al. Crystal growth and luminescence properties of Yb2Si2O7 infra-red emission scintillator. Opt. Mater. 2016, 58, 14–17. [Google Scholar] [CrossRef]
- Hester, G.; Nair, H.; Reeder, T.; Yahne, D.; DeLazzer, T.; Berges, L.; Ziat, D.; Quilliam, J.; Neilson, J.; Aczel, A.; et al. A novel strongly spin-orbit coupled quantum dimer magnet: Yb2Si2O7. arXiv, 2018; arXiv:1810.13096. [Google Scholar]
- Pidol, L.; Viana, B.; Galtayries, A.; Dorenbos, P. Energy levels of lanthanide ions in a Lu2Si2O7 host. Phys. Rev. B 2005, 72, 125110. [Google Scholar] [CrossRef]
- Ogawa, T.; Kobayashi, S.; Wada, M.; Fisher, C.A.; Kuwabara, A.; Kato, T.; Yoshiya, M.; Kitaoka, S.; Moriwake, H. Isolated energy level in the band gap of Yb2Si2O7 identified by electron energy-loss spectroscopy. Phys. Rev. B 2016, 93, 201107. [Google Scholar] [CrossRef]
- Koohpayeh, S.M. Single crystal growth by the traveling solvent technique: A review. Prog. Cryst. Growth Charact. Mater. 2016, 62, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Fullprof Suite. Available online: http://www.ill.eu/sites/fullprof/ (accessed on 2 April 2019).
- Coelho, A.A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Bretheau-Raynal, F.; Lance, M.; Charpin, P. Crystal data for Lu2Si2O7. J. Appl. Crystallogr. 1981, 14, 349–350. [Google Scholar] [CrossRef]
- Cologne Laue Indexation Program. clip4. Available online: http://clip4.sourceforge.net/ (accessed on 2 April 2019).
Growth Parameters | H015 | H037 | H045 | T01 |
---|---|---|---|---|
Starting material | semi-reacted ingot | reacted ingot | reacted ingot | reacted ingot |
Method | FZ | TSFZ | FZ | FZ |
Lamp voltage (%V) | 75% (4 × 1.5 kW) | 73.5% (4 × 1.5 kW) | 75.2% (4 × 1.5 kW) | 68.8% (4 × 1 kW) |
Lamp used | 1.5 kW | 1.5 kW | 1.5 kW | 1 kW |
Ambiance | air | O | air | O |
Pressure | 1 atm | 1 atm | 1 atm | 1 atm |
Flow rate | 5 L/m | 0 L/m | 2 L/m | 0.35 L/min |
Growth rate | 6 mm/h | 3 mm/h | 7 mm/h | 7 mm/h |
Feed/Seed rotation | 32/28 rpm | 20/20 rpm | 25/25 rpm | 20/20 rpm |
Grown length | 60 mm | 65 mm | 53 mm | 33 mm |
Color of crystal | whitish | transparent | whitish | pink |
C-YbSiO | Wyckoff Pos. | x | y | z | ||
---|---|---|---|---|---|---|
Yb | 0.5 | 0.8069 | 0.0 | |||
Si | 0.7189 | 0.5 | 0.4125 | |||
O(1) | 0.5 | 0.5 | 0.5 | |||
O(2) | 0.8831 | 0.5 | 0.7151 | |||
O(3) | 0.7361 | 0.6504 | 0.2197 | |||
D-ErSiO | Wyckoff Pos. | x | y | z | ||
Er | 0.8897 | 0.0908 | 0.3487 | |||
Si | 0.3614 | 0.6511 | 0.3889 | |||
O(1) | 0.5 | 0.5 | 0.5 | |||
O(2) | 0.2052 | 0.8653 | 0.4486 | |||
O(3) | 0.1235 | 0.4583 | 0.3191 | |||
O(4) | 0.6184 | 0.7522 | 0.2984 | |||
C-YbSiO | a (Å) | a (Å) | a (Å) | () | Ref. | Phase |
6.876 | 8.974 | 4.720 | 101.8 | [5] | P | |
6.7991 | 8.8734 | 4.7084 | 101.969 | [12] | SC | |
6.8005 | 8.8750 | 4.7074 | 101.984 | [11] | P | |
6.7714(9) | 8.8394(2) | 4.6896(5) | 101.984(9) | [13] | PC, SXRD | |
6.7997(9) | 8.875(8) | 4.7088(5) | 101.98(9) | [present work] | PC | |
D-ErSiO | a (Å) | a (Å) | a (Å) | () | Ref. | Phase |
4.683 | 5.56 | 10.79 | 96 | [8] | SC | |
4.666 | 5.55 | 10.81 | 96 | [9] | C | |
4.6893(1) | 5.5601(8) | 10.7967(1) | 96.03(2) | [present work] | PC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nair, H.S.; DeLazzer, T.; Reeder, T.; Sikorski, A.; Hester, G.; Ross, K.A. Crystal Growth of Quantum Magnets in the Rare-Earth Pyrosilicate Family R2Si2O7 (R = Yb, Er) Using the Optical Floating Zone Method. Crystals 2019, 9, 196. https://doi.org/10.3390/cryst9040196
Nair HS, DeLazzer T, Reeder T, Sikorski A, Hester G, Ross KA. Crystal Growth of Quantum Magnets in the Rare-Earth Pyrosilicate Family R2Si2O7 (R = Yb, Er) Using the Optical Floating Zone Method. Crystals. 2019; 9(4):196. https://doi.org/10.3390/cryst9040196
Chicago/Turabian StyleNair, Harikrishnan S., Tim DeLazzer, Tim Reeder, Antony Sikorski, Gavin Hester, and Kate A. Ross. 2019. "Crystal Growth of Quantum Magnets in the Rare-Earth Pyrosilicate Family R2Si2O7 (R = Yb, Er) Using the Optical Floating Zone Method" Crystals 9, no. 4: 196. https://doi.org/10.3390/cryst9040196
APA StyleNair, H. S., DeLazzer, T., Reeder, T., Sikorski, A., Hester, G., & Ross, K. A. (2019). Crystal Growth of Quantum Magnets in the Rare-Earth Pyrosilicate Family R2Si2O7 (R = Yb, Er) Using the Optical Floating Zone Method. Crystals, 9(4), 196. https://doi.org/10.3390/cryst9040196