An Optical Microscope Study of the Morphology of Xenon Hydrate Crystals: Exploring New Approaches to Cryopreservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Xenon Hydrates
2.2. Visual Examination of Gas Hydrate Samples by Microscopy
3. Results
3.1. The Induction Time of Xenon Hydrate Formation
3.2. The Variety of Morphological Forms of Xenon Hydrate under Different Conditions
3.2.1. The Cubic Form of Xenon Hydrate
3.2.2. The Dense Fine-Grained Form of Xenon Hydrate
3.2.3. The Whisker Form of Xenon Hydrate
3.2.4. The Acicular form of Xenon Hydrate
3.2.5. The Massive Form of Xenon Hydrate
3.3. The Prospect of Extremely Rapid Cooling to Obtain Small Sized Xenon Hydrate Crystals
3.4. «Memory» Effect
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Prehoda, R. Suspended Animation; Chilton Book Company: Philadelphia, PA, USA, 1969. [Google Scholar]
- Istomin, V.; Yakushev, V. Gazovye Gidraty v Prirodnykh Usloviyakh (Gas Hydrates in Nature); Nedra: Moscow, Russia, 1992. [Google Scholar]
- Manakov, A.Y.; Penkov, N.V.; Rodionova, T.V.; Nesterov, A.N.; Fesenko, E.E., Jr. Kinetics of formation and dissociation of gas hydrates. Russ. Chem. Rev. 2017, 86, 845–869. [Google Scholar] [CrossRef]
- Knunyants, I.L. (Ed.) Chemical Encyclopedia; Soviet Encyclopedia: Moscow, Russia, 1990; Volume 2. [Google Scholar]
- Davidson, D.W.; Handa, Y.P.; Ripmeester, J.A. Xenon—129 NMR and the thermodynamic parameters of xenon hydrate. J. Phys. Chem. 1986, 90, 6549–6552. [Google Scholar] [CrossRef]
- Sheleg, S.; Hixon, H.; Cohen, B.; Lowry, D.; Nedzved, M. Cardiac Mitochondrial Membrane Stability after Deep Hypothermia using a Xenon Clathrate Cryostasis Protocol—An Electron Microscopy Study. Int. J. Clin. Exp. Pathol. 2008, 1, 440–447. [Google Scholar]
- Artyukhov, V.I. Prospects for the creation of cryoprotectants based on inert gases and their mixtures. In Proceedings of the Materials of the International Correspondence Scientific and Practical Conference, Theoretical and practical aspects of modern cryobiology, Syktyvkar, Russia, 24 March 2014; pp. 88–94. [Google Scholar]
- Laptev, D.S.; Polezhaeva, T.V.; Zaitseva, O.O.; Khudyakov, A.N.; Utemov, S.V.; Knyazev, M.G.; Kostyaev, A.A. Effect of inert gas xenon on the functional state of nucleated cells of peripheral blood during freezing. Hum. Physiol. 2015, 41, 206–208. [Google Scholar] [CrossRef]
- Artyukhov, I.V.; Pulver, A.Y.; Peregudov, A.G.; Artyuhov, V.I. Probable mechanisms of the cryoprotective ability of xenon: Molecular modeling outcomes. Biofiz. Zhivoj Kletki 2014, 10, 28–31. (In Russian) [Google Scholar]
- Artyukhov, V.I.; Pulver, A.Y.; Peregudov, A.G.; Artyukhov, I.V. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system. J. Chem. Phys. 2014, 141, 034503. [Google Scholar] [CrossRef]
- Shishova, N.V.; Fesenko, E.E., Jr. The prospects of the application of gases and gas hydrates in cryopreservation. Biophysics 2015, 60, 782–804. [Google Scholar] [CrossRef]
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: Boca Rator, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Bishnoi, P.; Natarajan, V. Formation and decomposition of gas hydrates. Fluid Phase Equilibria 1996, 117, 168–177. [Google Scholar] [CrossRef]
- Nesterov, A.N. Kinetics and Mechanism of Hydrate Formation of Gases in the Presence of Surfactants. Ph.D. Thesis, Chemical Sciences, Earth Cryosphere Institute, Russian Academy of Sciences, Siberian Branch, Tyumen, Russia, 2006. [Google Scholar]
- Ribeiro, C.P., Jr.; Lage, P.L.C. Modelling of hydrate formation kinetics: State-of-the-art and future directions. Chem. Eng. Sci. 2008, 63, 2007–2034. [Google Scholar] [CrossRef]
- Kashchiev, D.; Firoozabadi, A. Nucleation of gas hydrates. J. Cryst. Growth 2002, 243, 476–489. [Google Scholar] [CrossRef]
- Kashchiev, D.; Firoozabadi, A. Driving force for crystallization of gas hydrates. J. Cryst. Growth 2002, 241, 220–230. [Google Scholar] [CrossRef]
- Kashchiev, D.; Firoozabadi, A. Induction time in crystallization of gas hydrates. J. Cryst. Growth 2003, 250, 499–515. [Google Scholar] [CrossRef]
- Skripov, V.P. Metastable Liquids; Halsted Press; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Dyadin, Y.A.; Larionov, E.G.; Mirinskij, D.S.; Mikina, T.V.; Aladko, E.Y.; Starostina, L.I. Phase Diagram of the Xe–H2O System up to 15 kbar. J. Incl. Phenom. 1997, 28, 271–285. [Google Scholar] [CrossRef]
- Makogon, Y.F. Gazovye Gidraty, Preduprezhdenie ikh Obrazovaniya i Ispol’zovanie (Gas Hydrates: Prevention of Their Formation and Application); Nedra: Moscow, Russia, 1985. [Google Scholar]
- Freer, E.M.; Selim, M.S.; Sloan, E.D. Methane hydrate film growth kinetics. Fluid Phase Equilibria 2001, 185, 65–75. [Google Scholar] [CrossRef]
- Sugaya, M.; Mori, Y.H. Behavior of clathrate hydrate formation at the boundary of liquid water and a fluorocarbon in liquid or vapor state. Chem. Eng. Sci. 1996, 51, 3505–3517. [Google Scholar] [CrossRef]
- Ohmura, R.; Shigetomi, T.; Mori, Y.H. Formation, growth and dissociation of clathrate hydrate crystals in liquid water in contact with a hydrophobic hydrate-forming liquid. J. Cryst. Growth 1999, 196, 164–173. [Google Scholar] [CrossRef]
- Ohmura, R.; Kashiwazaki, S.; Mori, Y.H. Measurements of clathrate-hydrate film thickness using laser interferometry. J. Cryst. Growth 2000, 218, 372–380. [Google Scholar] [CrossRef]
- Hirai, S.; Tabe, Y.; Kuwano, K.; Ogawa, K.; Okazaki, K. MRI measurement of hydrate growth and an application to advanced CO2 sequestration technology. Ann. N. Y. Acad. Sci. 2000, 912, 246–253. [Google Scholar] [CrossRef]
- Peng, B.Z.; Dandekar, A.; Sun, C.Y.; Luo, H.; Ma, Q.L.; Pang, W.X.; Chen, G.J. Hydrate Film Growth on the Surface of a Gas Bubble Suspended in Water. J. Phys. Chem. B 2007, 111, 12485–12493. [Google Scholar] [CrossRef]
- Kitamura, M.; Mori, Y.H. Clathrate-hydrate film growth along water/methane phase boundaries—An observational study. Cryst. Res. Technol. 2013, 48, 511–519. [Google Scholar] [CrossRef]
- Sun, C.Y.; Chen, G.J.; Ma, C.F.; Huang, Q.; Luo, H.; Li, Q.P. The growth kinetics of hydrate film on the surface of gas bubble suspended in water or aqueous surfactant solution. J. Cryst. Growth 2007, 306, 491–499. [Google Scholar] [CrossRef]
- Tanaka, R.; Sakemoto, R.; Ohmura, R. Crystal Growth of Clathrate Hydrates Formed at the Interface of Liquid Water and Gaseous Methane, Ethane, or Propane: Variations in Crystal Morphology. Cryst. Growth Des. 2009, 9, 2529–2536. [Google Scholar] [CrossRef]
- Mohammadi, A.; Manteghian, M.; Haghtalab, A.; Mohammadi, A.H.; Abkenar, M.R. Kinetic Study of Carbon Dioxide Hydrate Formation in Presence of Silver Nanoparticles and SDS. Chem. Eng. J. 2014, 237, 387–395. [Google Scholar] [CrossRef]
- Ohmura, R.; Ogawa, M.; Yasuoka, K.; Mori, Y.H. Statistical Study of Clathrate-Hydrate Nucleation in a Water/Hydrochlorofluorocarbon System: Search for the Nature of the “Memory Effect”. J. Phys. Chem. B 2003, 107, 5289–5293. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, B. Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation. J. Nat. Gas Chem. 2010, 19, 446–451. [Google Scholar] [CrossRef]
- Boutron, P.; Mehl, P.; Kaufmann, A.; Angibaud, P. Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons. I. Binary systems water-polyalcohol. Cryobiology 1986, 23, 453–469. [Google Scholar] [CrossRef]
- Smelik, E.A.; King, H.E., Jr. Crystal-growth studies of natural gas clathrate hydrates using a pressurized optical cell. Am. Mineral. 1997, 82, 88–98. [Google Scholar] [CrossRef]
- Takeya, S.; Uchida, T.; Nagao, J.; Ohmura, R.; Shimada, W.; Kamata, Y.; Ebinuma, T.; Narita, H. Particle size effect of CH4 hydrate for self-preservation. Chem. Eng. Sci. 2005, 60, 1383–1387. [Google Scholar] [CrossRef]
- Shimizu, H.; Hori, S.; Kume, T.; Sasaki, S. Optical microscopy and Raman scattering of a single crystalline argon hydrate at high pressures. Chem. Phys. Lett. 2003, 368, 132–138. [Google Scholar] [CrossRef]
- Takeya, S.; Nakano, K.; Thammawong, M.; Umeda, H.; Yoneyama, A.; Takeda, T.; Hyodo, K.; Matsuo, S. CO2 processing and hydration of fruit and vegetable tissues by clathrate hydrate formation. Food Chem. 2016, 205, 122–128. [Google Scholar] [CrossRef]
- Ponomarev, A.; Rodin, V.; Gurevich, L.; Melekhin, V.; Makeev, O. Hypothermic preservation of red blood cells in different conditions of inert gas xenon: Hyperbaria and clathrates. Cryo Lett. 2018, 39, 391–400. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobelev, A.; Yashin, V.; Penkov, N.; Shvirst, N.; Goltyaev, M.; Kovtun, A.; Fesenko, E., Jr. An Optical Microscope Study of the Morphology of Xenon Hydrate Crystals: Exploring New Approaches to Cryopreservation. Crystals 2019, 9, 215. https://doi.org/10.3390/cryst9040215
Kobelev A, Yashin V, Penkov N, Shvirst N, Goltyaev M, Kovtun A, Fesenko E Jr. An Optical Microscope Study of the Morphology of Xenon Hydrate Crystals: Exploring New Approaches to Cryopreservation. Crystals. 2019; 9(4):215. https://doi.org/10.3390/cryst9040215
Chicago/Turabian StyleKobelev, Alexey, Valery Yashin, Nikita Penkov, Nikolay Shvirst, Mikhail Goltyaev, Anatoliy Kovtun, and Eugeny Fesenko, Jr. 2019. "An Optical Microscope Study of the Morphology of Xenon Hydrate Crystals: Exploring New Approaches to Cryopreservation" Crystals 9, no. 4: 215. https://doi.org/10.3390/cryst9040215
APA StyleKobelev, A., Yashin, V., Penkov, N., Shvirst, N., Goltyaev, M., Kovtun, A., & Fesenko, E., Jr. (2019). An Optical Microscope Study of the Morphology of Xenon Hydrate Crystals: Exploring New Approaches to Cryopreservation. Crystals, 9(4), 215. https://doi.org/10.3390/cryst9040215