Numerical Simulation of Thermal-Solutal Capillary-Buoyancy Flow of Ge1–xSix Single Crystals Driven by Surface-Tension and Rotation in a Czochralski Configuration
Abstract
:1. Introduction
2. Physical and Mathematical Model
2.1. Basic Assumptions and Governing Equations
2.2. Calculations’ Conditions and Numerical Method
3. Results and Discussion
3.1. Basic Flow
3.2. Critical Conditions for the Flow Destabilization
3.3. Characteristics of the 3D Oscillatory Flow
3.3.1. The Influences of Crystal Rotation
3.3.2. The Influence of Crucible Rotation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sekhon, M.; Lent, B.; Ma, Y.B. Numerical analysis of the combined influence of accelerated crucible rotation and dynamic crucible translation on liquid phase diffusion growth of SiGe. Crystals 2016, 6, 116. [Google Scholar] [CrossRef]
- Jana, S.; Dost, S.; Kumar, V.; Durst, F. A numerical simulation study for the Czochralski growth process of Si under magnetic field. Int. J. Eng. Sci. 2006, 44, 554–573. [Google Scholar] [CrossRef]
- Hu, C.; Chen, J.C.; Nguyen, T.H.T.; Hou, Z.Z.; Chen, C.H.; Huang, Y.H.; Yang, M. Optimization of heat transfer during the directional solification process of 1600 kg silicon feedstock. Crystals 2018, 484, 70–77. [Google Scholar]
- Kumar, V.; Basu, B.; Enger, S.; Brenner, G.; Durst, F. Role of Marangoni convection in Si-Czochralski melts—Part II: 3D predictions with crystal rotation. J. Cryst. Growth 2003, 255, 27–39. [Google Scholar] [CrossRef]
- Yamamoto, T.; Okano, Y.; Ujihara, T.; Dost, S. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation. J. Cryst. Growth 2017, 470, 75–88. [Google Scholar] [CrossRef]
- Derby, J.J. Fluid dynamics in crystal growth: The good, the bad, and the ugly. Prog. Cryst. Growth Charact. Mater. 2016, 2, 286–301. [Google Scholar] [CrossRef]
- Gałązka, Z.; Wilke, H. Influence of Marangoni convection on the flow pattern in the melt during growth of Y3Al5O12 single crystals by the Czochralski method. J. Cryst. Growth 2000, 216, 389–398. [Google Scholar] [CrossRef]
- Schwabe, D. Buoyant-thermocapillary and pure thermocapillary convective instabilities in Czochralski systems. J. Cryst. Growth 2002, 237, 1849–1853. [Google Scholar] [CrossRef]
- Li, Y.R.; Quan, X.J.; Peng, L.; Imaishi, N.; Wu, S.Y.; Zeng, D.L. Three-dimensional thermocapillary-buoyancy flow in a shallow molten silicon pool with Cz configuration. Int. J. Heat Mass Transf. 2005, 48, 1952–1960. [Google Scholar] [CrossRef]
- Li, Y.R.; Imaishi, N.L.; Peng, S.Y.; Wu, T.; Hibiya. Thermocapillary flow in a shallow molten silicon pool with Czochralski configuration. J. Cryst. Growth 2004, 266, 88–95. [Google Scholar] [CrossRef]
- Shen, T.; Wu, C.M.; Li, Y.R. Experimental investigation on the effect of crystal and crucible rotation on thermocapillary convection in a Czochralski configuration. Int. J. Therm. Sci. 2016, 104, 20–28. [Google Scholar] [CrossRef]
- Shen, T.; Wu, C.M.; Zhang, L.; Li, Y.R. Experimental investigation on effects of crystal and crucible rotation on thermal convection in a model Czochralski configuration. J. Cryst. Growth 2016, 438, 55–62. [Google Scholar] [CrossRef]
- Yonenaga, I.; Murakami, Y. Segregation during the seeding process in the Czochralski growth of GeSi alloys. J. Cryst. Growth 1998, 191, 399–404. [Google Scholar] [CrossRef]
- Yonenaga, I. Czochralski growth of GeSi bulk alloy crystals. J. Cryst. Growth 1999, 198, 404–408. [Google Scholar] [CrossRef]
- Niu, X.H.; Zhang, W.L.; Lu, G.Q.; Jiang, Z.W. Distribution of Ge in high concentration Ge-doped Czochralski-Si crystal. J. Cryst. Growth 2004, 267, 424–428. [Google Scholar] [CrossRef]
- Bergman, T.L. Numerical simulation of double-diffusive Marangoni convection. Phys. Fluids 1986, 29, 2103–2108. [Google Scholar] [CrossRef]
- Chen, Z.W.; Li, Y.S.; Zhan, J.M. Double-diffusive Marangoni convection in a rectangular cavity: Onset of convection. Phys. Fluids 2010, 22, 034106. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.S.; Chen, Z.W.; Zhan, J.M. Double-diffusive Marangoni convection in a rectangular cavity: Transition to chaos. Int. J. Heat Mass Transf. 2010, 53, 5223–5231. [Google Scholar] [CrossRef]
- Kamotani, Y.; Wang, L.W.; Ostrach, S.; Jiang, H.D. Experimental study of natural convection in shallow enclosures with horizontal temperature and concentration gradients. Int. J. Heat Mass Transf. 1985, 28, 165–173. [Google Scholar] [CrossRef]
- Arafune, K.; Hirata, A. Interactive solutal and thermal Marangoni convection in a rectangular open boat. Numer. Heat Tranf. A Appl. 1998, 34, 421–429. [Google Scholar] [CrossRef]
- Arafune, K.; Hirata, A. Thermal and solutal Marangoni convection in In-Ga-Sb system. J. Cryst. Growth 1999, 197, 811–817. [Google Scholar] [CrossRef]
- Li, Y.R.; Zhou, Y.L.; Tang, J.W.; Gong, Z.X. Two-dimensional numerical simulation for flow pattern transition of thermal-solutal capillary convection in an annular pool. Microgravity Sci. Technol. 2013, 25, 225–230. [Google Scholar] [CrossRef]
- Yu, J.J.; Li, Y.R.; Wu, C.M.; Chen, J.C. Three-dimensional thermocapillary–buoyancy flow of a binary mixture with Soret effect in a shallow annular pool. Int. J. Heat Mass Transf. 2015, 90, 1071–1081. [Google Scholar] [CrossRef]
- Yu, J.J.; Wu, C.M.; Li, Y.R.; Chen, J.C. Thermal-solutal capillary-buoyancy flow of a low Prandtl number binary mixture with a −1 capillary ratio in an annular pool. Phys. Fluids 2016, 28, 084102. [Google Scholar] [CrossRef]
- Yu, J.J.; Li, Y.R.; Chen, J.C.; Zhang, Y.; Wu, C.M. Thermal-solutal capillary-buoyancy flow of a low Prandtl number binary mixture with various capillary ratios in an annular pool. Int. J. Heat Mass Transf. 2017, 113, 40–52. [Google Scholar] [CrossRef]
- Abbasoglu, S.; Sezai, I. Three-dimensional modelling of melt flow and segregation during Czochralski growth of GexSi1-x single crystals. Int. J. Therm. Sci. 2007, 46, 561–572. [Google Scholar] [CrossRef]
- Nguyen, T.H.T.; Chen, J.C.; Hu, C.; Chen, C.H.; Huang, Y.H.; Lin, H.W.; Yu, A.; Hsu, B.; Yang, M.; Yang, R. Numerical study of the thermal and flow fields during the growth process of 800 kg and 1600 kg silicon feedstock. Crystals 2017, 7, 74. [Google Scholar] [CrossRef]
- Yin, L.Y.; Jie, W.Q.; Wang, T.; Zhou, B.R.; Yang, F.; Nan, R.H. The effects of ACRT on the growth of ZnTe crystal by the temperature gradient solution growth technique. Crystals 2017, 7, 82. [Google Scholar] [CrossRef]
- Huang, H.L.; Zhang, Y.; Zhu, G.P. Thermocapillary flow and free-surface deformation of liquid bridge under different magnetic fields. Appl. Therm. Eng. 2018, 135, 83–94. [Google Scholar] [CrossRef]
- Izadi, M.; Dubljevic, S. Analysis of melt flow mixing in Czochralski crystal growth process. Ind. Eng. Chem. Res. 2012, 51, 8675–8683. [Google Scholar] [CrossRef]
- Kobayashi, S. Numerical-analysis of oxygen-transport in magnetic Czochralski growth of silicon. J. Cryst. Growth 1987, 85, 69–74. [Google Scholar] [CrossRef]
- Wu, C.M.; Yuan, B.; Li, Y.R. Flow instabilities of coupled rotation and thermal-solutal capillary convection of a binary mixture in Czochralski configuration. Crystals 2019, 9, 72. [Google Scholar] [CrossRef]
- Vegad, M.; Bhatt, N.M. Review of some aspects of single crystal growth using Czochralski crystal growth technique. Procedia Technol. 2014, 14, 438–446. [Google Scholar] [CrossRef]
- Campbell, T.A.; Schweizer, M.; Dold, P.; Croll, A.; Benz, K.W. Float zone growth and characterization of Ge1-xSix (x<=10 at %) single crystals. J. Cryst. Growth 2001, 226, 231–239. [Google Scholar] [CrossRef]
- Zhan, J.M.; Chen, Z.W.; Li, Y.S.; Nie, Y.H. Three-dimensional double-diffusive Marangoni convection in a cubic cavity with horizontal temperature and concentration gradients. Phys. Rev. E 2010, 82, 066305. [Google Scholar] [CrossRef]
- Wu, C.M.; Ruan, D.F.; Li, Y.R.; Liao, R.J. Flow pattern transition driven by the combined Marangoni effect and rotation of crucible and crystal in a Czochralski configuration. Int. J. Therm. Sci. 2014, 86, 394–407. [Google Scholar] [CrossRef]
- Yu, J.J.; Li, Y.R.; Zhang, L.; Ye, S.; Wu, C.M. Experimental study on the flow instability of a binary mixture driven by rotation and surface-tension gradient in a shallow Czochralski configuration. Int. J. Therm. Sci. 2017, 118, 236–246. [Google Scholar] [CrossRef]
- Haslavsky, V.; Gelfgat, A.Y.; Kit, E. Experimental modelling of Czochralski melt flow with a slow crystal dummy rotation. Acta Phys. Pol. A 2013, 124, 193–197. [Google Scholar] [CrossRef]
- Hintz, P.; Schwabe, D. Convection in a Czochralski crucible—Part 2: Non-rotating crystal. J. Cryst. Growth 2001, 222, 356–364. [Google Scholar] [CrossRef]
- Azami, T.; Nakamura, S.; Eguchi, M.; Hibiya, T. The role of surface-tension-driven flow in the formation of a surface pattern on a Czochralski silicon melt. J. Cryst. Growth 2001, 233, 99–107. [Google Scholar] [CrossRef]
Property | Symbol | Unit | Value |
---|---|---|---|
Density | ρ | kg/m3 | 5246.00 |
Thermal diffusivity | α | m2/s | 2.20 × 10−5 |
Viscosity | μ | kg/(m·s) | 7.34 × 10−4 |
Mass diffusivity of species | D | m2/s | 1.00 × 10−8 |
Temperature coefficient of surface tension | γT | N/(m·k) | 8.10 × 10−5 |
Concentration coefficient of surface tension | γC | N/m | −0.536 |
Prandtl number | Pr | - | 6.37 × 10−3 |
Lewis number | Le | - | 2197.80 |
Grids | m | f (Hz) |
---|---|---|
42R × 40Z × 60θ | 4 | 0.1879 |
62R × 50Z × 80θ | 4 | 0.1887 |
80R × 60Z × 104θ | 4 | 0.1848 |
ReT | Nu | Deviation (%) | |
---|---|---|---|
Present | Reference [35] | ||
10 | 1.010 | 1.007 | 0.30 |
120 | 1.332 | 1.328 | 0.30 |
200 | 1.496 | 1.497 | 0.07 |
340 | 1.770 | 1.762 | 0.45 |
380 | 1.832 | 1.821 | 0.60 |
450 | 1.933 | 1.953 | 1.02 |
ReT | f/Hz | Deviation (%) | |
---|---|---|---|
Present | Reference [17] | ||
350 | 6.94 | 6.84 | 1.46 |
410 | 7.89 | 7.82 | 0.90 |
500 | 9.35 | 9.26 | 0.97 |
540 | 10.14 | 10.02 | 1.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.-J.; Zhang, L.; Shen, T.; Zhang, L.; Li, Y.-R. Numerical Simulation of Thermal-Solutal Capillary-Buoyancy Flow of Ge1–xSix Single Crystals Driven by Surface-Tension and Rotation in a Czochralski Configuration. Crystals 2019, 9, 217. https://doi.org/10.3390/cryst9040217
Yu J-J, Zhang L, Shen T, Zhang L, Li Y-R. Numerical Simulation of Thermal-Solutal Capillary-Buoyancy Flow of Ge1–xSix Single Crystals Driven by Surface-Tension and Rotation in a Czochralski Configuration. Crystals. 2019; 9(4):217. https://doi.org/10.3390/cryst9040217
Chicago/Turabian StyleYu, Jia-Jia, Lu Zhang, Ting Shen, Li Zhang, and You-Rong Li. 2019. "Numerical Simulation of Thermal-Solutal Capillary-Buoyancy Flow of Ge1–xSix Single Crystals Driven by Surface-Tension and Rotation in a Czochralski Configuration" Crystals 9, no. 4: 217. https://doi.org/10.3390/cryst9040217
APA StyleYu, J. -J., Zhang, L., Shen, T., Zhang, L., & Li, Y. -R. (2019). Numerical Simulation of Thermal-Solutal Capillary-Buoyancy Flow of Ge1–xSix Single Crystals Driven by Surface-Tension and Rotation in a Czochralski Configuration. Crystals, 9(4), 217. https://doi.org/10.3390/cryst9040217