Optical Observation of Striations in Y2Ti2O7 Single Crystals
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. The Optical Observation of As-Grown Y2Ti2O7 Crystals
3.2. The Striations and the Growth Interface
3.2.1. Observation of Striations of As-Grown Crystals
3.2.2. Overheating of the Floating Zone Resulting from Heat Exchange
3.2.3. Overheating and Striation Curvatures
3.3. The Effects of the Supplied Power on the Striation of the Y2Ti2O7 Crystal
3.4. The Effects of Rotation Speed on the Striation of the Y2Ti2O7 Crystal
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, P.; Jones, S.C.; Hotchkiss, P.J.; Haddock, J.N.; Kippelen, B.; Marder, S.R.; Perry, J.W. Phosphonic Acid-Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength. Adv. Mater. 2007, 19, 1001. [Google Scholar] [CrossRef]
- Shlyakhtina, A.; Shcherbakova, L. New solid electrolytes of the pyrochlore family. Russ. J. Electrochem. 2012, 48, 1. [Google Scholar] [CrossRef]
- Higashi, M.; Abe, R.; Sugihara, H.; Domen, K. Photocatalytic Water Splitting into H2 and O2 over Titanate Pyrochlores Ln2Ti2O7 (Ln = Lanthanoid: Eu–Lu). Bull. Chem. Soc. Jpn. 2008, 81, 1315. [Google Scholar] [CrossRef]
- Johnson, M.B.; James, D.D.; Bourque, A.; Dabkowska, H.A.; Gaulin, D.B.; White, M.A. Thermal properties of the pyrochlore, Y2Ti2O7. J. Solid State Chem. 2009, 182, 725. [Google Scholar] [CrossRef]
- Mani, R.; Fischer, M.; Joy, J.E.; Gopalakrishnan, J.; Jansen, M. Ruthenium(IV) pyrochlore oxides: Realization of novel electronic properties through substitution at A- and B-sites. Solid State Sci. 2009, 11, 189. [Google Scholar] [CrossRef]
- Su, W.P.; Lee, Y.H.; Hsieh, C.T.; Sheu, H.S.; Lee, J.S.; Chiang, Y.P.; Kao, H.-C.I. Effect of Li2O Addition on the Preparation of (Y2-yLiy)Ti2O7-y. J. Chin. Chem. Soc. 2009, 56, 1112. [Google Scholar] [CrossRef]
- Straehan, D.M.; Scheele, R.D.; Buek, E.C.; Icenhower, J.P.; Kozelisky, A.E.; Sell, R.L.; Elovich, R.J.; Buchmiller, W.C. Radiation damage effects in candidate titanates for Pu disposition: Pyrochlore. J. Nucl. Mater. 2005, 345, 109. [Google Scholar] [CrossRef]
- Quilliam, J.A.; Yaraskavitch, L.R.; Dabkowska, H.A.; Gaulin, B.D.; Kycia, J.B. Dynamics of the magnetic susceptibility deep in the Coulomb phase of the dipolar spin ice material Ho2Ti2O7. Phys. Rev. B 2011, 83, 094424. [Google Scholar] [CrossRef]
- Ruff, J.P.C.; Islam, Z.; Clancy, J.P.; Ross, K.A.; Nojiri, H.; Matsuda, Y.H.; Dabkowska, H.A.; Dabkowski, A.D.; Gaulin, B.D. Magnetoelastics of a Spin Liquid: X-Ray Diffraction Studies of Tb2Ti2O7 in Pulsed Magnetic Fields. Phys. Rev. Lett. 2010, 105, 077203. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.S.; Gingras, M.J.; Greedan, J.E. Magnetic pyrochlore oxides. Rev. Mod. Phys. 2010, 82, 53. [Google Scholar] [CrossRef]
- Antonov, V.A.; Arsenev, P.A. Spectroscopic properties of single crystals of rare earth titanates. Phys. Status Solidi A 1976, 35, K169. [Google Scholar] [CrossRef]
- Antonov, V.A.; Arsenev, P.A.; Petrova, D.S. Spectroscopic properties of the Nd3+ ion in Y2Ti2O7 and Gd2Ti2O7 monocrystals. Phys. Status Solidi A 1977, 41, K127. [Google Scholar] [CrossRef]
- Yan, D.; Qiu, J.B.; Song, Z.G.; Zhou, D.C.; Yu, X.; Yang, Y.; Wang, R.F.; Wu, H.J.; Yin, Z.Y.; Yang, Z.W. Blue and Green Upconversion Emission Modification in Tb, Yb Co-Doped Y2Ti2O7 Inverse Opal. In Proceedings of the Symposium on Photonics and Optoelectronics (SOPO), Shanghai, China, 21–23 May 2012. [Google Scholar]
- Matteucci, F.; Cruciani, G.; Dondi, M.; Baldi, G.; Barzanti, A. Crystal structural and optical properties of Cr-doped Y2Ti2O7 and Y2Sn2O7 pyrochlores. Acta Mater. 2007, 55, 2229. [Google Scholar] [CrossRef]
- Feng, W.L.; Xue, J.Y. Theoretical investigation of optical spectra and covalent effect of Cr4+ in Y2Ti2O7 and Y2Sn2O7. Phys. B 2012, 407, 2344. [Google Scholar] [CrossRef]
- Morrison, C.A. Angular Momentum Theory Applied to Interactions in Solids; Springer Science & Business Media: Berlin, Germany, 2012; p. 124. [Google Scholar]
- Hossain, M.M.; Watauchi, S.; Naga, M.; Tanaka, I. Effects of lamp power and mirror position on the interface shape of the silicon molten zone during infrared convergent heating. CrystEngComm 2014, 16, 4619. [Google Scholar] [CrossRef]
- Sarker, M.A.R.; Watauchi, S.; Nagao, M.; Watanabe, T.; Shindo, I.; Tanaka, I. Effects of tilting mirrors on the solid–liquid interface during floating zone growth using tilting-mirror-type infrared-heating image furnace. J. Cryst. Growth 2010, 312, 2008. [Google Scholar] [CrossRef]
- Sarker, M.A.R.; Watauchi, S.; Nagao, M.; Watanabe, T.; Shindo, I.; Tanaka, I. Effects of the diameter of rutile (TiO2) single crystals grown using tilting-mirror-type infrared heating image furnace on solid–liquid interface and etch pit density. J. Cryst. Growth 2011, 317, 135. [Google Scholar] [CrossRef]
- Watauchi, S.; Sarker, M.A.R.; Nagao, M.; Tanaka, I.; Watanabe, T.; Shindo, I. Crystal growth of rutile by tilting-mirror-type floating zone method. J. Cryst. Growth 2012, 360, 105. [Google Scholar] [CrossRef]
- Dabkowska, H.A.; Dabkowski, A.B. Optical Floating Zone—Complementary Crystal Growth Technique for New Classes of Oxide Materials. In Handbook of Crystal Growth; Nishinaga, T., Rudolph, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume II, p. 283. [Google Scholar]
- Liu, C.Y.; Dabkowski, A.; Jie, W.Q.; Gaulin, B.D.; Dabkowska, H.A. XRD Analysis of RE2Ti2O7 Crystals Grown by Optical Floating Zone Method. Crystals 2019. submitted. [Google Scholar]
- Higuchi, M.; Kodaira, K. Solid-liquid interface shapes in the floating zone growth of rutile single crystals. Mater. Res. Bull. 1994, 29, 545. [Google Scholar] [CrossRef]
Sample | Lamps (a) | Input Power (kW, nominal) | Feed Speed (mm/h) | Growth Speed (b) (mm/h) | Seed-Rod Rotation (c) (rpm) | Atmosphere | Pressure (kPa) |
---|---|---|---|---|---|---|---|
#1 | 2 × 1.5 kW | 2.55 | 6.0–6.4 | 6.5 | 7–30 | Air | 100 |
#2 | 2 × 1.5 kW | 2.7–2.73 | 5.9–6.4 | 6.5–7.3 | 20 | Air | 200 |
#3 | 2 × 1.5 kW | 2.67–2.69 | 5.6–6.9 | 7.0–7.3 | 7–30 | Ar (d) | 350 |
#4 | 2 × 1.5 kW | 2.72–2.73 | 6.2–7.0 | 7.0–7.2 | 7–30 | O2 | 350 |
#5 | 2 × 1.5 kW | 2.72–2.73 | 6.9–7.0 | 7.0–7.3 | 7–30 | O2 | 200 |
#6 | 2 × 2 kW | 2.94 | 7.4 | 7.7 | 7–30 | O2 | 140 |
#7 | 2 × 2 kW | 2.83 | 7.0 | 7.8 | 7–30 | O2 | 140 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Dabkowski, A.; Jie, W.; Gaulin, B.D.; Dabkowska, H.A. Optical Observation of Striations in Y2Ti2O7 Single Crystals. Crystals 2019, 9, 233. https://doi.org/10.3390/cryst9050233
Liu C, Dabkowski A, Jie W, Gaulin BD, Dabkowska HA. Optical Observation of Striations in Y2Ti2O7 Single Crystals. Crystals. 2019; 9(5):233. https://doi.org/10.3390/cryst9050233
Chicago/Turabian StyleLiu, Changyou, Antoni Dabkowski, Wanqi Jie, Bruce D. Gaulin, and Hanna A. Dabkowska. 2019. "Optical Observation of Striations in Y2Ti2O7 Single Crystals" Crystals 9, no. 5: 233. https://doi.org/10.3390/cryst9050233
APA StyleLiu, C., Dabkowski, A., Jie, W., Gaulin, B. D., & Dabkowska, H. A. (2019). Optical Observation of Striations in Y2Ti2O7 Single Crystals. Crystals, 9(5), 233. https://doi.org/10.3390/cryst9050233