Passivation Effect on ZnO Films by SF6 Plasma Treatment
Abstract
:1. Introduction
2. Experiment
3. Measurement and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, Y.M.; Seo, J.H.; Takacs, C.J.; Seifter, J.; Heeger, A.J. Inverted polymer solar cells integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO film as an electron transport Layer. Adv. Mater. 2011, 23, 1679–1683. [Google Scholar] [CrossRef] [PubMed]
- You, J.B.; Dou, L.T.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.C.; Gao, J.; Li, G.; et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2014, 4, 1446. [Google Scholar] [CrossRef]
- Wu, Z.W.; Song, T.; Xia, Z.H.; Wei, H.X.; Sun, B.Q. Enhanced performance of polymer solar cell with ZnO nanoparticle electron transporting layer passivated by in situ cross-linked three-dimensional polymer network. Nanotechnology 2013, 24, 484012. [Google Scholar] [CrossRef]
- Ali, G.M.; Chakrabartia, P. Fabrication and characterization of thin film ZnO schottky contacts based UV photodetectors: A comparative study. J. Vac. Sci. Technol. B 2012, 30, 0310206. [Google Scholar] [CrossRef]
- Li, M.Y.; Andersona, W. Laser annealing of laser assisted molecular beam deposited ZnO thin films with application to metal-semiconductor-metal photodetectors. J. Appl. Phys. 2006, 100, 053106. [Google Scholar] [CrossRef]
- Hwang, D.K.; Oh, M.S.; Lim, J.H.; Choi, Y.S.; Parka, S.J. ZnO-based light-emitting metal-insulator-semiconductor diodes. Appl. Phys. Lett. 2007, 91, 121113. [Google Scholar] [CrossRef]
- Elzwawi, S.; Kim, H.S.; Lynam, M.; Mayes, E.L.H.; McCulloch, D.G.; Allen, M.W.; Partridge, J.G. Stable n-channel metal-semiconductor field effect transistors on ZnO films deposited using a filtered cathodic vacuum arc. Appl. Phys. Lett. 2012, 101, 243508. [Google Scholar] [CrossRef]
- Frenzel, H.; Lajn, A.; Brandt, M.; Wenckstern, H.V.; Biehne, G.; Hochmuth, H.; Lorenz, M.; Grundmann, M. ZnO metal-semiconductor field-effect transistors with Ag-Schottky gates. Appl. Phys. Lett. 2008, 92, 192108. [Google Scholar] [CrossRef]
- Kohan, A.F.; Ceder, G.; Morgan, D.; Van de Walle, C.G. First-principles study of native point defects in ZnO. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 61, 15019. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. [Google Scholar] [CrossRef]
- Hartel, M.; Chen, S.; Swerdlow, B.; Hsu, H.Y.; Manders, J.; Schanze, K.; So, F. Defect-Induced loss mechanisms in Polymer−Inorganic planar heterojunction solar cells. ACS Appl. Mater. Interfaces 2013, 5, 7215. [Google Scholar] [CrossRef]
- Gadisa, A.; Liu, Y.; Samulski, E.T.; Lopez, R. Minimizing interfacial losses in inverted organic solar cells comprising Al-doped ZnO. Appl. Phys. Lett. 2012, 100, 253903. [Google Scholar] [CrossRef]
- Carroll, G.M.; Schimpf, A.M.; Tsui, E.Y.; Gamelin, D.R. Redox potentials of colloidal n-Type ZnO nanocrystals: effects of confinement, electron density, and Fermi-Level pinning by aldehyde hydrogenation. J. Am. Chem. Soc. 2015, 137, 11163–11169. [Google Scholar] [CrossRef] [PubMed]
- Schuler, T.; Aegerter, M.A. Optical, electrical and structural properties of sol gel ZnO: Al coatings. Thin Solid Films 1999, 351, 125–131. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yoshid, H.K. Physics and control of valence states in ZnO by codoping method. Phys. B Condens. Matter 2001, 302, 155–162. [Google Scholar] [CrossRef]
- Han, J.P.; Senos, A.M.R.; Mantas, P.Q. Deep donors in polycrystalline Mn-doped ZnO. Mater. Chem. Phys. 2002, 75, 117–120. [Google Scholar] [CrossRef]
- Gao, F.; Liu, X.Y.; Zheng, L.Y.; Li, M.X.; Bai, Y.M.; Xie, J. Microstructure and optical properties of Fe-doped ZnO thin films prepared by DC magnetron sputtering. J. Cryst. Growth 2013, 37, 126–129. [Google Scholar] [CrossRef]
- Park, Y.K.; Han, J.I.; Kwak, M.G.; Yang, H.; Ju, S.H.; Cho, W.S. Time-resolved spectroscopic study of energy transferin ZnO: EuCl3 phosphors. J. Lumin. 1998, 78, 87–90. [Google Scholar] [CrossRef]
- Zhao, X.; Komuro, S.; Isshiki, H.; Aoyagi, Y.; Sugano, T. Fabrication and optical transition dynamics of Er-doped ZnO thin films formed on Si substrates. J. Lumin. 2000, 87, 1254–1256. [Google Scholar] [CrossRef]
- Chaabouni, F.; Abaab, M.; Rezig, B. Metrological characteristics of ZNO oxygen sensor at room temperature. Sens. Actuat. B 2004, 100, 200–204. [Google Scholar] [CrossRef]
- Fang, Z.B.; Wang, Y.Y.; Xu, D.Y.; Tan, Y.S.; Liu, X.Q. Blue luminescent center in ZnO films deposited on silicon substrates. Opt. Mater. 2004, 26, 239–242. [Google Scholar] [CrossRef]
- Liu, C.C.; Wu, M.L.; Liu, K.C.; Hsiao, S.H.; Chen, Y.S.; Lin, G.R.; Huang, J.J. Transparent ZnO thin-film transistors on glass and plastic substrates using post-sputtering oxygen passivation. J. Disp. Technol. 2009, 5, 192–197. [Google Scholar] [CrossRef]
- Gao, F.; Tan, L.X.; Wu, Z.H.; Liu, X.Y. Microstructural and optical properties of ZnO/(Ni) thin films prepared by DC magnetron sputtering. J. Alloy. Compd. 2009, 484, 489–493. [Google Scholar] [CrossRef]
- Xu, H.Y.; Liu, Y.C.; Ma, J.G.; Luo, Y.M.; Lu, Y.M.; Shen, D.Z.; Zhang, J.Y.; Fan, X.W.; Mu, R. Photoluminescence of F-passivated ZnO nanocrystalline films made from thermally oxidized ZnF2 films. J. Phys. Condens. Matter. 2004, 16, 5143–5150. [Google Scholar] [CrossRef]
- Kawamotoa, Y.; Ogurab, K.; Shojiyab, M.; Takahashib, M.; Kadonoc, K. F1s XPS of fluoride glasses and related fluoride crystals. J. Fluorine Chem. 1999, 96, 135–139. [Google Scholar] [CrossRef]
- Zhang, X.T.; Liu, Y.C.; Zhang, J.Y.; Lu, Y.M.; Shen, D.Z.; Fan, X.W.; Kong, X.G. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. J. Cryst. Growth 2003, 254, 80–85. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lee, H.Y. Effect of hydrogen peroxide pretreatment on ZnO-based metal–semiconductor–metal ultraviolet photodetectors deposited using plasma-enhanced atomic layer deposition. J. Vac. Sci. Technol. 2016, 34, 01A110. [Google Scholar] [CrossRef]
- Lin, B.X.; Fu, Z.X.; Jia, Y.B. Green luminescence center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943–945. [Google Scholar] [CrossRef]
- Meulenkamp, E.A. Size dependence of the dissolution of ZnO nanoparticles. J. Phy. Chem. B 1998, 102, 7764–7769. [Google Scholar] [CrossRef]
- Jeong, K.S.; Oh, S.K.; Shin, H.S.; Yun, H.J.; Kim, S.H.; Lee, H.R.; Han, K.M.; Park, H.Y.; Lee, H.D.; Lee, G.W. Novel silicon surface passivation by Al2O3/ZnO/Al2O3 films deposited by thermal atomic layer deposition. Jpn. J. Appl. Phys. 2014, 53, 04ER19. [Google Scholar] [CrossRef]
- Panigrahy, B.; Aslam, M.; Misra, D.S.; Ghosh, M.; Bahadur, D. Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater. 2010, 20, 1161–1165. [Google Scholar] [CrossRef]
- Chen, T.; Xing, G.Z.; Zhang, Z.; Chen, H.Y.; Wu, T. Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles. Nanotechnology 2008, 19, 435711. [Google Scholar] [CrossRef] [PubMed]
- Przeździecka, E.; Kamińska, E.; Pasternak, I.; Piotrowska, A.; Kossut, J. Photoluminescence study of p-type ZnO:Sb prepared by thermal oxidation of the Zn-Sb starting material. Phys. Rev. B Condens. Matter Mater Phys. 2007, 76, 10–13. [Google Scholar] [CrossRef]
- Kurbanov, S.S.; Panin, G.N.; Kang, T.W. Spatially resolved investigations of the emission around 3.31 eV (A-line) from ZnO nanocrystals. Appl. Phys. Lett. 2009, 95, 211902. [Google Scholar] [CrossRef]
- Dietrich, C.P.; Brandt, M.; Lange, M.; Kupper, J.; Böntgen, T.; Von Wenckstern, H.; Grundmann, M. Defect properties of ZnO and ZnO:P microwires. J. Appl. Phys. 2011, 109, 1–6. [Google Scholar] [CrossRef]
- Han, X.; Kou, L.; Zhang, Z.; Zhang, Z.; Zhu, X.; Xu, J.; Liao, Z.; Guo, W.; Yu, D. Strain-gradient effect on energy bands in bent ZnO microwires. Adv. Mater. 2012, 24, 4707–4711. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.S.; Xu, J.P.; Zhu, S.Y.; Huang, Y.; Lai, P.T. Improved interfacial and electrical properties of GaAs metal-oxide-semiconductor capacitors with HfTiON as gate dielectric and TaON as passivation interlayer. Appl. Phys. Lett. 2013, 103, 092901. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Shripathi, T.; Banerji, P. Interface engineering with an MOCVD grown ZnO interface passivation layer for ZrO2-GaAs metal-oxide-semiconductor devices. Solid State Commun. 2011, 151, 1881–1884. [Google Scholar] [CrossRef]
Sample | Resistivity (Ω·cm) | Mobility (cm2·V−1·s−1) | Carrier Density (cm−3) |
---|---|---|---|
ZnO | 2.92 × 10−2 | 8.34 | 2.47 × 1019 |
F-ZnO | 1.11 × 10−1 | 15.2 | 1.44 × 1017 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Bo, B.; Gao, X.; Qiao, Z. Passivation Effect on ZnO Films by SF6 Plasma Treatment. Crystals 2019, 9, 236. https://doi.org/10.3390/cryst9050236
Xu Y, Bo B, Gao X, Qiao Z. Passivation Effect on ZnO Films by SF6 Plasma Treatment. Crystals. 2019; 9(5):236. https://doi.org/10.3390/cryst9050236
Chicago/Turabian StyleXu, Yumeng, Baoxue Bo, Xin Gao, and Zhongliang Qiao. 2019. "Passivation Effect on ZnO Films by SF6 Plasma Treatment" Crystals 9, no. 5: 236. https://doi.org/10.3390/cryst9050236
APA StyleXu, Y., Bo, B., Gao, X., & Qiao, Z. (2019). Passivation Effect on ZnO Films by SF6 Plasma Treatment. Crystals, 9(5), 236. https://doi.org/10.3390/cryst9050236