Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters
Abstract
:1. Introduction
2. Design Principle
3. Experiments
3.1. Bandwidth Tunable PSCLC Filter
3.2. Bandwidth Tunable PSBPLC Filter
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hikmet, R.A.M.; Kemperman, H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 1998, 392, 476–479. [Google Scholar] [CrossRef]
- Hikmet, R.A.M.; Kemperman, H. Switchable mirrors of chiral liquid crystal gels. Liquid Cryst. 1999, 26, 1645–1653. [Google Scholar] [CrossRef]
- Xu, X.W.; Liu, Y.J.; Wang, F.; Luo, D. Narrow linewidth and temperature insensitive blue phase liquid crystal films. IEEE Photonics J. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Gevorgyan, A.H. Resonant interaction of light with a stack of alternating layers of a cholesteric liquid crystal and an isotropic medium. Phys. Rev. E 2015, 92, 062501. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jin, M.; Zhang, S. Polarization-independent bandwidth-variable tunable optical filter based on cholesteric liquid crystals. Jpn. J. Appl. Phys. 2014, 53, 072601. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, S. Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals. Appl. Opt. 2012, 51, 5780–5784. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, S. Optical filter with tunable wavelength and bandwidth based on cholesteric liquid crystals. Opt. Lett. 2011, 36, 4563–4565. [Google Scholar] [CrossRef]
- Palto, S.P.; Barnik, M.I.; Geivandov, A.R.; Kasyanova, I.V.; Palto, V.S. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals. Phys. Rev. E 2015, 92, 032502. [Google Scholar] [CrossRef]
- Ozaki, R.; Matsuura, K.; Kadowaki, K. Theoretical study of bandwidth control of full-pitch band of a ferroelectric liquid crystal by varying incident angle and electric field. Appl. Phys. Express 2017, 10, 081601. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Johnson, K.M. Analog smectic c * ferroelectric liquid crystal fabry-perot optical tunable filter. IEEE Photonics Technol. Lett. 1995, 7, 1309–1311. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Chiou, J.-Y.; Yang, K.-X. Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field. Appl. Phys. Lett. 2011, 99, 181119. [Google Scholar] [CrossRef]
- Wang, C.-T.; Jau, H.-C.; Lin, T.-H. Bistable cholesteric-blue phase liquid crystal using thermal hysteresis. Opt. Mater. 2011, 34, 248–250. [Google Scholar] [CrossRef]
- Yoshida, H.; Anucha, K.; Ogawa, Y.; Kawata, Y.; Ozaki, M.; Fukuda, J.-I.; Kikuchi, H. Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals. Phys. Rev. E 2016, 94, 042703. [Google Scholar] [CrossRef]
- Sala-Tefelska, M.; Orzechowski, K.; Sala, F.; Woliński, T.; Strzeżysz, O.; Kula, P. The influence of orienting layers on blue phase liquid crystals in rectangular geometries. Photonics Lett. Pol. 2018, 10, 100–102. [Google Scholar] [CrossRef]
- Sala-Tefelska, M.M.; Orzechowski, K.; Sierakowski, M.; Siarkowska, A.; Woliński, T.R.; Strzeżysz, O.; Kula, P. Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains. Opt. Mater. 2018, 75, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; He, W.; Yuan, X.; Hu, W.; Cao, H.; Yang, H.; Zhu, S. Broadband reflection characteristic of polymer-stabilised cholesteric liquid crystal with pitch gradient induced by a hydrogen bond. Liquid Cryst. 2010, 37, 1275–1280. [Google Scholar] [CrossRef]
- Fuh, A.Y.-G.; Ho, S.-J.; Wu, S.-T.; Li, M.-S. Optical filter with tunable wavelength and bandwidth based on phototunable cholesteric liquid crystals. Appl. Opt. 2014, 53, 1658–1662. [Google Scholar] [CrossRef]
- Balamurugan, R.; Liu, J.-H. A review of the fabrication of photonic band gap materials based on cholesteric liquid crystals. React. Funct. Polym. 2016, 105, 9–34. [Google Scholar] [CrossRef]
- Grzelczyk, D.; Awrejcewicz, J. Calculation of reflectance and transmittance of optical birefringent networks based on cholesteric liquid crystals. Lat. Am. J. Solids Struct. 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, W.; Yu, Y.; Yang, Z.; He, W.; Cao, H.; Wang, D. The temperature range and optical properties of the liquid crystalline blue phase in inverse opal structures. J. Mater. Chem. C 2018, 6, 11071–11077. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Wang, C.-T.; Hsu, C.-Y.; Lin, T.-H.; Liu, J.-H. Optically tuneable blue phase photonic band gaps. Appl. Phys. Lett. 2010, 96, 121103. [Google Scholar] [CrossRef]
- Ogawa, Y.; Fukuda, J.-I.; Yoshida, H.; Ozaki, M. Photonic band structure and transmission analysis of cholesteric blue phase ii: Electrostriction in the [100] direction. Opt. Express 2014, 22, 3766–3772. [Google Scholar] [CrossRef]
- Tondiglia, V.P.; Natarajan, L.V.; Bailey, C.A.; McConney, M.E.; Lee, K.M.; Bunning, T.J.; Zola, R.; Nemati, H.; Yang, D.-K.; White, T.J.; et al. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt. Mater. Express 2014, 4, 1465–1472. [Google Scholar] [CrossRef]
- Khandelwal, H.; Debije, M.G.; White, T.J.; Schenning, A.P.H.J. Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. J. Mater. Chem. A 2016, 4, 6064–6069. [Google Scholar] [CrossRef]
- Lin, J.-D.; Huang, S.-Y.; Wang, H.-S.; Lin, S.-H.; Mo, T.-S.; Horng, C.-T.; Yeh, H.-C.; Chen, L.-J.; Lin, H.-L.; Lee, C.-R. Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell. Opt. Express 2014, 22, 29479–29492. [Google Scholar] [CrossRef] [PubMed]
- Tondiglia, V.T.; Natarajan, L.V.; Bailey, C.A.; Duning, M.M.; Sutherland, R.L.; Ke-Yang, D.; Voevodin, A.; White, T.J.; Bunning, T.J. Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J. Appl. Phys. 2011, 110, 053109. [Google Scholar] [CrossRef]
- Mitov, M. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 2012, 24, 6260–6276. [Google Scholar] [CrossRef]
- White, T.J.; Freer, A.S.; Tabiryan, N.V.; Bunning, T.J. Photoinduced broadening of cholesteric liquid crystal reflectors. J. Appl. Phys. 2010, 107, 073110. [Google Scholar] [CrossRef]
- Ogiwara, A.; Kakiuchida, H. Thermally tunable light filter composed of cholesteric liquid crystals with different temperature dependence. Solar Energy. Mater. Sol. Cells 2016, 157, 250–258. [Google Scholar] [CrossRef]
- Hirota, Y.; Ji, Y.; Serra, F.; Tajbakhsh, A.R.; Terentjev, E.M. Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers. Opt. Express 2008, 16, 5320–5331. [Google Scholar] [CrossRef]
- Lin, J.-D.; Wang, T.-Y.; Mo, T.-S.; Huang, S.-Y.; Lee, C.-R. Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase. Sci. Rep. 2016, 6, 30407. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cao, H.; Li, K.; Song, P.; Wu, X.; Yang, H. Control homogeneous alignment of chiral nematic liquid crystal with smectic-like short-range order by thermal treatment. Colloids Surf. A Physicochem. Eng. Asp. 2012, 410, 31–37. [Google Scholar] [CrossRef]
- Joshi, P.; Shang, X.; De Smet, J.; Islamai, E.; Cuypers, D.; Van Steenberge, G.; Van Vlierberghe, S.; Dubruel, P.; De Smet, H. On the effect of alignment layers on blue phase liquid crystals. Appl. Phys. Lett. 2015, 106, 101105. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Xu, F.; Yang, D.-K. Effects of cell structure on the reflection of cholesteric liquid crystal displays. J. Appl. Phys. 1998, 83, 1938–1944. [Google Scholar] [CrossRef]
- Nayek, P.; Jeong, H.; Park, H.R.; Kang, S.-W.; Lee, S.H.; Park, H.S.; Lee, H.J.; Kim, H.S. Tailoring monodomain in blue phase liquid crystal by surface pinning effect. Appl. Phys. Express 2012, 5, 051701. [Google Scholar] [CrossRef]
- Clarke, R.H. A theory for the christiansen filter. Appl. Opt. 1968, 7, 861–868. [Google Scholar] [CrossRef]
- Hirosawa, I.; Sasaki, N. Influence of annealing on molecular orientation of rubbed polyimide film observed by reflection ellipsometry. Jpn. J. Appl. Phys. 1997, 36, 6953–6956. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Lu, J. Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters. Crystals 2019, 9, 268. https://doi.org/10.3390/cryst9050268
Sun C, Lu J. Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters. Crystals. 2019; 9(5):268. https://doi.org/10.3390/cryst9050268
Chicago/Turabian StyleSun, Changli, and Jiangang Lu. 2019. "Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters" Crystals 9, no. 5: 268. https://doi.org/10.3390/cryst9050268
APA StyleSun, C., & Lu, J. (2019). Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters. Crystals, 9(5), 268. https://doi.org/10.3390/cryst9050268