Calcium Carbonate Mineralization in a Surface-Tension-Confined Droplets Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Fabrication of Surface-Tension-Confined Droplet Arrays
2.3. Fabrication of CaCO3
2.4. Characterization
3. Results and Discussions
3.1. Microdroplet Diameter Control
3.2. Crystals Formed without PAA
3.3. Crystals Formed with PAA
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matsumura, S.; Kajiyama, S.; Nishimura, T.; Kato, T. Formation of Helically Structured Chitin/CaCO3 Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles. Small 2015, 11, 5127–5133. [Google Scholar] [CrossRef]
- Jin, W.; Jiang, S.; Pan, H.; Tang, R. Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization. Crystals 2018, 8, 48. [Google Scholar] [CrossRef]
- Mann, S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 1993, 365, 499–505. [Google Scholar] [CrossRef]
- Pokroy, B.; Zolotoyabko, E.; Adir, N. Purification and Functional Analysis of a 40 kD Protein Extracted from the Strombus decorus persicus Mollusk Shells. Biomacromolecules 2006, 7, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Jayaraman, S.; Chen, W.; Persson, K.A.; Ceder, G. Nucleation of metastable aragonite CaCO3 in seawater. Proc. Natl. Acad. Sci. USA 2015, 112, 3199–3204. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Habraken, W.J.E.M.; Matveeva, G.; Jensen, A.C.S.; Bertinetti, L.; Hood, M.A.; Sun, C.; Gilbert, P.U.P.A.; Polishchuk, I.; Pokroy, B.; et al. A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate. Science 2019, 363, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Cusack, M.; Freer, A. Biomineralization: Elemental and organic influence in carbonate systems. Chem. Rev. 2008, 108, 4433–4454. [Google Scholar] [CrossRef] [PubMed]
- Shahlori, R.; McDougall, D.R.; Waterhouse, G.I.N.; Yao, F.; Mata, J.P.; Nelson, A.R.J.; McGillivray, D.J. Biomineralization of Calcium Phosphate and Calcium Carbonate within Iridescent Chitosan/Iota-Carrageenan Multilayered Films. Langmuir 2018, 34, 8994–9003. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, Z.; Yu, H.; Kang, G.; Jie, X.; Jin, Y.; Cao, Y. Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component. J. Membr. Sci. 2016, 497, 485–493. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Mao, L.B.; Jiang, Y.; Liu, M.F.; Huang, Q.; Yu, Z.; Wang, S.; Yu, S.H.; Lin, C.; et al. Seeded Mineralization Leads to Hierarchical CaCO3 Thin Coatings on Fibers for Oil/Water Separation Applications. Langmuir 2018, 34, 2942–2951. [Google Scholar] [CrossRef]
- Bujduveanu, M.-R.; Yao, W.; Le Goff, A.; Gorgy, K.; Shan, D.; Diao, G.-W.; Ungureanu, E.-M.; Cosnier, S. Multiwalled Carbon Nanotube-CaCO3Nanoparticle Composites for the Construction of a Tyrosinase-Based Amperometric Dopamine Biosensor. Electroanalysis 2013, 25, 613–619. [Google Scholar] [CrossRef]
- Dong, Z.; Feng, L.; Hao, Y.; Chen, M.; Gao, M.; Chao, Y.; Zhao, H.; Zhu, W.; Liu, J.; Liang, C.; et al. Synthesis of Hollow Biomineralized CaCO3-Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity. J. Am. Chem. Soc. 2018, 140, 2165–2178. [Google Scholar] [CrossRef]
- Hanafy, N.A.N.; El-Kemary, M.; Leporatti, S. Reduction diameter of CaCO3 crystals by using poly acrylic acid might improve cellular uptake of encapsulated curcumin in breast cancer. J. Nanomed. Res. 2018, 7, 235–239. [Google Scholar] [CrossRef]
- Sommerdijk, N.A.J.M.; With, G. Biomimetic CaCO3 Mineralization using Designer Molecules and Interfaces. Chem. Rev. 2008, 108, 4499–4550. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Guo, Y.-P.; Zhao, X.; Wang, Z. Influence of Surfactant-polymer Complexes on Crystallization and Aggregation of CaCO3. Chem. Res. Chin. Univ. 2012, 28, 737–742. [Google Scholar]
- Liu, M.-F.; Lu, Z.; Zhang, Z.; Xiao, C.; Li, M.; Huang, Y.-X.; Liu, X.Y.; Jiang, Y. Correlations of crystal shape and lateral orientation in bioinspired CaCO3 mineralization. CrystEngComm 2018, 20, 5241–5248. [Google Scholar] [CrossRef]
- Xu, A.W.; Antonietti, M.; Cölfen, H.; Fang, Y.P. Uniform Hexagonal Plates of Vaterite CaCO3 Mesocrystals Formed by Biomimetic Mineralization. Adv. Funct. Mater. 2006, 16, 903–908. [Google Scholar] [CrossRef]
- Meier, A.; Kastner, A.; Harries, D.; Wierzbicka-Wieczorek, M.; Majzlan, J.; Büchel, G.; Kothe, E. Calcium carbonates: Induced biomineralization with controlled macromorphology. Biogeosciences 2017, 14, 4867–4878. [Google Scholar] [CrossRef]
- He, L.; Xue, R.; Song, R. Formation of calcium carbonate films on chitosan substrates in the presence of polyacrylic acid. J. Solid State Chem. 2009, 182, 1082–1087. [Google Scholar] [CrossRef]
- Shen, Y.; Nyström, G.; Mezzenga, R. Amyloid Fibrils form Hybrid Colloidal Gels and Aerogels with Dispersed CaCO3 Nanoparticles. Adv. Funct. Mater. 2017, 27, 1700897. [Google Scholar] [CrossRef]
- Ouhenia, S.; Chateigner, D.; Belkhir, M.A.; Guilmeau, E.; Krauss, C. Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid. J. Cryst. Growth 2008, 310, 2832–2841. [Google Scholar] [CrossRef]
- Aizenberg, J.; Black, A.J.; Whitesides, G.M. Control of crystal nucleation by patterned self-assembled monolayers. Nature 1999, 398, 495–498. [Google Scholar] [CrossRef]
- Li, L.; Sanchez, J.R.; Kohler, F.; Røyne, A.; Dysthe, D.K. Microfluidic Control of Nucleation and Growth of CaCO3. Cryst. Growth Des. 2018, 18, 4528–4535. [Google Scholar] [CrossRef]
- Komatsu, S.; Ikedo, Y.; Asoh, T.A.; Ishihara, R.; Kikuchi, A. Fabrication of Hybrid Capsules via CaCO3 Crystallization on Degradable Coacervate Droplets. Langmuir 2018, 34, 3981–3986. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Ji, B.; Dobson, P.S.; Mosbahi, K.; Glidle, A.; Gadegaard, N.; Freer, A.; Cooper, J.M.; Cusack, M. Screening of Biomineralization using Microfluidics. Anal. Chem. 2009, 81, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Wang, Y.W.; Ihli, J.; Kim, Y.Y.; Li, S.; Walshaw, R.; Chen, L.; Meldrum, F.C. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization. Adv. Mater. 2015, 27, 7395–7400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Cao, J.; Wang, Z.; Guo, J.; Lu, J. Formation of Amorphous Calcium Carbonate and Its Transformation Mechanism to Crystalline CaCO3 in Laminar Microfluidics. Cryst. Growth Des. 2018, 18, 1710–1721. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, W.; Yin, X.; Liu, Y.; Yin, P.; Wang, J. Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP. Desalination 2008, 228, 55–60. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, Z.; Gao, Y.; Wu, J.; Wen, W. High-throughput controllable generation of droplet arrays with low consumption. Appl. Surf. Sci. 2018, 442, 189–194. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, Z.; Zhang, M.; Wu, J.; Wen, W. Lateral Size Scaling Effect during Discontinuous Dewetting. Adv. Mater. Int. 2018, 5, 1800729. [Google Scholar] [CrossRef]
- Wu, H.; Chen, X.; Gao, X.; Zhang, M.; Wu, J.; Wen, W. High-Throughput Generation of Durable Droplet Arrays for Single-Cell Encapsulation, Culture, and Monitoring. Anal. Chem. 2018, 90, 4303–4309. [Google Scholar] [CrossRef]
- Dandeu, A.; Humbert, B.; Carteret, C.; Muhr, H.; Plasari, E.; Bossoutrot, J.M. Raman Spectroscopy—A Powerful Tool for the Quantitative Determination of the Composition of Polymorph Mixtures: Application to CaCO3 Polymorph Mixtures. Chem. Eng. Technol. 2006, 29, 221–225. [Google Scholar] [CrossRef]
- Shahidzadeh, N.; Schut, M.F.; Desarnaud, J.; Prat, M.; Bonn, D. Salt stains from evaporating droplets. Sci Rep. 2015, 5, 10335. [Google Scholar] [CrossRef]
- Shahidzadeh-Bonn, N.; Rafaı, S.; Bonn, D.; Wegdam, G. Salt Crystallization during Evaporation: Impact of Interfacial Properties. Langmuir 2008, 24, 8599–8605. [Google Scholar] [CrossRef] [PubMed]
- Przybylek, M.; Cysewski, P.; Pawelec, M.; Ziolkowska, D.; Kobierski, M. On the origin of surface imposed anisotropic growth of salicylic and acetylsalicylic acids crystals during droplet evaporation. J. Mol. Model. 2015, 21, 49. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, Y.; Xing, J.; Zhang, M.; Wu, J. Surface-tension-confined assembly of a metal–organic framework in femtoliter droplet arrays. RSC Adv. 2018, 8, 3680–3686. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, X.; Guo, Y.; Lv, X.; Ren, S.; Yuan, M.; Wang, Z. Controlled synthesis of hollow calcite microspheres modulated by polyacrylic acid and sodium dodecyl sulfonate. Mater. Lett. 2007, 61, 2810–2813. [Google Scholar] [CrossRef]
- Schmidt, B.V.; Fechler, N.; Falkenhagen, J.; Lutz, J.F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat. Chem. 2011, 3, 234–238. [Google Scholar] [CrossRef]
- Guan, L.; Xu, H.; Huang, D. The investigation on states of water in different hydrophilic polymers by DSC and FTIR. J. Polym. Res. 2010, 18, 681–689. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Xia, Z.; Zhang, M.; Wu, J.; Wen, W. Calcium Carbonate Mineralization in a Surface-Tension-Confined Droplets Array. Crystals 2019, 9, 284. https://doi.org/10.3390/cryst9060284
He Z, Xia Z, Zhang M, Wu J, Wen W. Calcium Carbonate Mineralization in a Surface-Tension-Confined Droplets Array. Crystals. 2019; 9(6):284. https://doi.org/10.3390/cryst9060284
Chicago/Turabian StyleHe, Zhong, Zengzilu Xia, Mengying Zhang, Jinbo Wu, and Weijia Wen. 2019. "Calcium Carbonate Mineralization in a Surface-Tension-Confined Droplets Array" Crystals 9, no. 6: 284. https://doi.org/10.3390/cryst9060284
APA StyleHe, Z., Xia, Z., Zhang, M., Wu, J., & Wen, W. (2019). Calcium Carbonate Mineralization in a Surface-Tension-Confined Droplets Array. Crystals, 9(6), 284. https://doi.org/10.3390/cryst9060284