Effect of Local Recrystallized Grains on the Low Cycle Fatigue Behavior of a Nickel-Based Single Crystal Superalloy
Abstract
:1. Introduction
2. Materials and Experimental
3. Results and Discussion
3.1. Fatigue Fracture Life
3.2. Fatigue Fractography and Fracture Mechanism
3.3. Temperature Effect on the Fatigue Fracture Mechanism
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- He, Y.H.; Hou, X.Q.; Tao, C.H.; Han, F.K. Recrystallization and fatigue fracture of single crystal turbine blades. Eng. Failure Anal. 2011, 18, 944–949. [Google Scholar] [CrossRef]
- Ma, X.; Shi, H.J.; Gu, J.L.; Yang, Z.; Chen, G.F.; Luesebrink, O.; Harders, H. Influence of surface recrystallization on the low cycle fatigue behavior of a single crystal superalloy. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 340–351. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Q.; Liu, B. Experimental investigation on recrystallization mechanism of a Ni-base single crystal superalloy. J Alloy Compd. 2016, 672, 457–469. [Google Scholar] [CrossRef]
- Meng, J.; Jin, T.; Sun, X.; Hu, Z. Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy. Mater. Sci. Eng. A 2010, 527, 6119–6122. [Google Scholar] [CrossRef]
- Xie, G.; Lou, L.H. Influence of the characteristic of recrystallization grain boundary on the formation of creep cracks in a directionally solidified Ni-base superalloy. Mater. Sci. Eng. A 2012, 532, 579–584. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, X.; Liu, D.L.; Tao, C.H. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy. Mater. Sci. Eng. A 2012, 551, 149–153. [Google Scholar] [CrossRef]
- Zhang, W.F.; Li, Y.J.; Gao, W.; Fan, J.J.; Tao, C.H. Investigation on low cycle fatigue and fracture behaviors of directionally solidified DZ4 superalloy. Rare Metal Mater. Eng. 2005, 34, 217–220. [Google Scholar]
- Bürgel, R.; Portella, P.D.; Preuhs, J. Recrystallization in single crystals of nickel base superalloys. Superalloys 2000, 5, 229–238. [Google Scholar]
- Ma, X.F.; Shi, H.J.; Gu, J.L. In-situ scanning electron microscopy studies of small fatigue crack growth in recrystallized layer of a directionally solidified superalloy. Mater. Lett. 2010, 64, 2080–2083. [Google Scholar] [CrossRef]
- Shi, H.J.; Zhang, H.F.; Wu, Y.Q. Effect of recrystallization on low-cycle fatigue behavior of DZ4 directionally-solidified superalloy. Key Eng. Mater. 2006, 306, 175–180. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Li, H.Y.; Yu, T.; Liu, Y. Effects of recrystallization on the low cycle fatigue behavior of directionally solidified superalloy DZ40M. Rare Metals 2008, 27, 425–428. [Google Scholar] [CrossRef]
- Jia, B.; Li, C.G.; Li, H.Y. Influence of recrystallization layer at surface on fatigue behaviors of directionally solidified DZ4 superalloy. Mater. Eng. 2008, 6, 64–71. [Google Scholar]
- Ma, X.; Shi, H.J. In situ SEM studies of the low cycle fatigue behavior of DZ4 superalloy at elevated temperature: Effect of partial recrystallization. Int. J. Fatigue 2014, 61, 255–263. [Google Scholar] [CrossRef]
- Tomczyk, A.; Seweryn, A.; Grądzka-Dahlke, M. The effect of dynamic recrystallization on monotonic and cyclic behaviour of Al-Cu-Mg alloy. Materials 2018, 11, 874. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.F.; Shi, H.J.; Gu, J.L.; Wang, Z.X.; Harders, H.; Malow, T. Temperature effect on low-cycle fatigue behavior of nickel-based single crystalline superalloy. Acta Mech. Solida Sin. 2008, 21, 289–297. [Google Scholar] [CrossRef]
- Standard Test Method for Strain-Controlled Fatigue Testing, ASTM E606/E606M-12; ASTM Internatioinal: West Conshohocken, PA, USA, 2012.
- Ma, X.; Wei, D.; Han, Q.; Rui, S. Parametric study of cyclic plasticity behavior in a directionally solidified superalloy with partial recrystallization by crystal plasticity finite element simulation. J. Mater. Eng. Perform. 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Wang, J.; Ning, Y. Oxidation behavior and microstructure degeneration of cast Ni-based superalloy M951 at 900 °C. Appl. Surf. Sci. 2019, 479, 709–719. [Google Scholar] [CrossRef]
- Yi, J.Z.; Torbet, C.J.; Feng, Q.; Pollock, T.M.; Jones, J.W. Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000 °C. Mater. Sci. Eng. A 2007, 443, 142–149. [Google Scholar] [CrossRef]
- Xu, C.; Nai, Q.L.; Yao, Z.H.; Jiang, H.; Dong, J.X. Grain boundary oxidation effect of GH4738 superalloy on fatigue crack growth. Acta Metall. Sin. 2017, 53, 1453–1460. [Google Scholar]
- Rai, R.K.; Sahu, J.K. Mean-stress and oxidation effects on fatigue behaviour of CM 247 DS LC alloy. Mater. Sci. Technol. 2019, 1–7. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Jiang, J.; Zhang, W.; Shi, H.-j.; Gu, J. Effect of Local Recrystallized Grains on the Low Cycle Fatigue Behavior of a Nickel-Based Single Crystal Superalloy. Crystals 2019, 9, 312. https://doi.org/10.3390/cryst9060312
Ma X, Jiang J, Zhang W, Shi H-j, Gu J. Effect of Local Recrystallized Grains on the Low Cycle Fatigue Behavior of a Nickel-Based Single Crystal Superalloy. Crystals. 2019; 9(6):312. https://doi.org/10.3390/cryst9060312
Chicago/Turabian StyleMa, Xianfeng, Jishen Jiang, Wenjie Zhang, Hui-ji Shi, and Jialin Gu. 2019. "Effect of Local Recrystallized Grains on the Low Cycle Fatigue Behavior of a Nickel-Based Single Crystal Superalloy" Crystals 9, no. 6: 312. https://doi.org/10.3390/cryst9060312
APA StyleMa, X., Jiang, J., Zhang, W., Shi, H. -j., & Gu, J. (2019). Effect of Local Recrystallized Grains on the Low Cycle Fatigue Behavior of a Nickel-Based Single Crystal Superalloy. Crystals, 9(6), 312. https://doi.org/10.3390/cryst9060312