High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Device Structure and Material Characterizations of MoTe2/MoSe2 Heterojunctions
3.2. Electrical Behaviors of MoTe2/MoSe2 Heterojunctions
3.3. Opto-Electrical Behaviors of MoTe2/MoSe2 Heterojunctions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional Van der Waals Heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, A.; Zubair, A.; Dresselhaus, M.S.; Palacios, T. Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. Nano Lett. 2016, 16, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, F.; Bellus, M.Z.; Chiu, H.Y.; Zhao, H. Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2-MoSe2 van der Waals Heterostructure. ACS Nano 2014, 8, 12717–12724. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Wen, X.W.; Zhang, J.; Wu, T.M.; Gong, Y.J.; Zhang, X.; Yuan, J.T.; Yi, C.Y.; Lou, J.; Ajayan, P.M.; et al. Ultrafast Formation of Interlayer Hot Excitons in Atomically Thin MoS2/WS2 Heterostructures. Nat. Commun. 2016, 7, 12512. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.; Moody, G.; Wu, F.C.; Lu, X.B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D.A.; Quan, J.M.; Singh, A.; et al. Evidence for Moire Excitons in van der Waals Heterostructures. Nature 2019, 567, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Han, Z.; Elahi, M.M.; Habib, K.M.M.; Wang, L.; Wen, B.; Gao, Y.D.; Taniguchi, T.; Watanabe, K.; Hone, J.; et al. Electron Optics with p-n Junctions in Ballistic Graphene. Science 2016, 353, 1522–1525. [Google Scholar] [CrossRef]
- Britnell, L.; Ribeiro, R.M.; Eckmann, A.; Jalil, R.; Belle, B.D.; Mishchenko, A.; Kim, Y.J.; Gorbachev, R.V.; Georgiou, T.; Morozov, S.V.; et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340, 1311–1314. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, Z.X.; Xu, K.; Wang, F.M.; Wang, Q.S.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance. Nano Lett. 2015, 15, 7558–7566. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, G.H.; van der Zande, A.M.; Chen, W.C.; Li, Y.L.; Han, M.Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T.F.; et al. Atomically Thin p-n Junctions with van der Waals Heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Furchi, M.M.; Pospischil, A.; Libisch, F.; Burgdorfer, J.; Mueller, T. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Lett. 2014, 14, 4785–4791. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, S.X.; Wang, C.; Wu, M.H.; Huang, L.; Liu, Q.; Jiang, C.B. Enhanced Current Rectification and Self-Powered Photoresponse in Multilayer p-MoTe2/n-MoS2 van der Waals Heterojunctions. Nanoscale 2017, 9, 10733–10740. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X.D.; Wu, G.J.; Wang, Z.; Fang, H.H.; Lin, T.; Sun, S.; Shen, H.; Hu, W.D.; Wang, J.L.; et al. High-Performance Photovoltaic Detector Based on MoTe2/MoS2 Van der Waals Heterostructure. Small 2018, 14, 1703293. [Google Scholar] [CrossRef] [PubMed]
- Pezeshki, A.; Hossein, S.; Shokouh, H.; Nazari, T.; Oh, K.; Im, S. Electric and Photovoltaic Behavior of a Few-Layer α-MoTe2/MoS2 Dichalcogenide Heterojunction. Adv. Mater. 2016, 28, 3216–3222. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Lee, Y.T.; Min, S.W.; Lee, H.S.; Nam, T.; Kim, H.; Im, S. Direct Imprinting of MoS2 Flakes on a Patterned Gate for Nanosheet Transistors. J. Mater. Chem. C 2013, 1, 7803–7807. [Google Scholar] [CrossRef]
- Nam, D.; Lee, J.U.; Cheong, H. Excitation Energy Dependent Raman Spectrum of MoSe2. Sci. Rep. 2015, 5, 17113. [Google Scholar] [CrossRef] [PubMed]
- Lezama, I.G.; Arora, A.; Ubaldini, A.; Barreteau, C.; Giannini, E.; Potemski, M.; Morpurgo, A.F. Indirect-to-Direct Band Gap Crossover in Few-Layer MoTe2. Nano Lett. 2015, 15, 2336–2342. [Google Scholar] [CrossRef]
- Kang, J.; Tongay, S.; Zhou, J.; Li, J.B.; Wu, J.Q. Band Offsets and Heterostructures of Two-Dimensional Semiconductors. Appl. Phys. Lett. 2013, 102, 012111. [Google Scholar] [CrossRef]
- Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T.S.; Li, J.B.; Grossman, J.C.; Wu, J.Q. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580. [Google Scholar] [CrossRef]
- Ruppert, C.; Aslan, O.B.; Heinz, T.F. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals. Nano Lett. 2014, 14, 6231–6236. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Wang, Y.; Huang, L.; Wang, X.T.; Li, X.Y.; Deng, H.X.; Wei, Z.M.; Li, J.B. Anti-Ambipolar Field-Effect Transistors Based On Few-Layer 2D Transition Metal Dichalcogenides. ACS Appl. Mater. Inter. 2016, 8, 15574–15581. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yin, L.; Wang, Z.X.; Xu, K.; Wang, F.M.; Shifa, T.A.; Huang, Y.; Jiang, C.; He, J. Configuration-Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe2/MoS2. Adv. Funct. Mater. 2016, 26, 5499–5506. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.D.; Cheng, H.C.; Huang, Y.; Duan, X.F. Van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Shockley, W. The Theory of P-N Junctions in Semiconductors and P-N Junction Transistors. Bell Syst. Tech. J. 1949, 28, 435–489. [Google Scholar] [CrossRef]
- Hao, J.H.; Gao, J.; Wang, Z.; Yu, D.P. Interface Structure and Phase of Epitaxial SrTiO3 (110) Thin Films Grown Directly on Silicon. Appl. Phys. Lett. 2005, 87, 131908. [Google Scholar] [CrossRef]
- Yang, Z.B.; Huang, W.; Hao, J.H. Determination of Band Alignment of Pulsed-Laser-Deposited Perovskite Titanate/III-V Semiconductor Heterostructure using X-ray and Ultraviolet Photoelectron Spectroscopy. Appl. Phys. Lett. 2013, 103, 031919. [Google Scholar] [CrossRef]
- Schein, F.L.; von Wenckstern, H.; Grundmann, M. Transparent p-CuI/n-ZnO Heterojunction Diodes. Appl. Phys. Lett. 2013, 102, 092109. [Google Scholar] [CrossRef]
- Zeng, L.H.; Wang, M.Z.; Hu, H.; Nie, B.; Yu, Y.Q.; Wu, C.Y.; Wang, L.; Hu, J.G.; Xie, C.; Liang, F.X.; et al. Monolayer Graphene/Germanium Schottky Junction as High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Inter. 2013, 5, 9362–9366. [Google Scholar] [CrossRef]
- Wu, D.; Jiang, Y.; Zhang, Y.G.; Li, J.W.; Yu, Y.Q.; Zhang, Y.P.; Zhu, Z.F.; Wang, L.; Wu, C.Y.; Luo, L.B.; et al. Device Structure-Dependent Field-Effect and Photoresponse Performances of p-type ZnTe:Sb Nanoribbons. J. Mater. Chem. 2012, 22, 6206–6212. [Google Scholar] [CrossRef]
- Kung, S.C.; van der Veer, W.E.; Yang, F.; Donavan, K.C.; Penner, R.M. 20 μs Photocurrent Response from Lithographically Patterned Nanocrystalline Cadmium Selenide Nanowires. Nano Lett. 2010, 10, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Cho, M.Y.; Konar, A.; Lee, J.H.; Cha, G.B.; Hong, S.C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Adv. Mater. 2012, 24, 5832–5836. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wu, J.X.; Feng, Q.L.; Mao, N.N.; Wang, C.M.; Zhang, J. High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor. Small 2014, 10, 2300–2306. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Jeon, P.J.; Raza, S.R.A.; Pezeshki, A.; Min, S.W.; Hwang, D.K.; Im, S. Transition Metal Dichalcogenide Heterojunction PN Diode toward Ultimate Photovoltaic Benefits. 2D Mater. 2016, 3, 045011. [Google Scholar] [CrossRef]
- Wang, P.; Liu, S.S.; Luo, W.J.; Fang, H.H.; Gong, F.; Guo, N.; Chen, Z.G.; Zou, J.; Huang, Y.; Zhou, X.H.; et al. Arrayed Van Der Waals Broadband Detectors for Dual-Band Detection. Adv. Mater. 2017, 29, 1604439. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Chang, Y.T.; Chen, H.J. Efficient Self-Driven Photodetectors Featuring a Mixed-Dimensional van der Waals Heterojunction Formed from a CdS Nanowire and a MoTe2 Flake. Small 2018, 14, 1802302. [Google Scholar] [CrossRef] [PubMed]
- Pospischil, A.; Furchi, M.M.; Mueller, T. Solar-energy Conversion and Light Emission in an Atomic Monolayer p-n Diode. Nat. Nanotechnol. 2014, 9, 257–261. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, H.; Wang, B.; Wang, E.; Wang, X.; Sun, Y.; Liu, K. High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions. Crystals 2019, 9, 315. https://doi.org/10.3390/cryst9060315
Luo H, Wang B, Wang E, Wang X, Sun Y, Liu K. High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions. Crystals. 2019; 9(6):315. https://doi.org/10.3390/cryst9060315
Chicago/Turabian StyleLuo, Hao, Bolun Wang, Enze Wang, Xuewen Wang, Yufei Sun, and Kai Liu. 2019. "High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions" Crystals 9, no. 6: 315. https://doi.org/10.3390/cryst9060315
APA StyleLuo, H., Wang, B., Wang, E., Wang, X., Sun, Y., & Liu, K. (2019). High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions. Crystals, 9(6), 315. https://doi.org/10.3390/cryst9060315