A Grain Boundary Regulates the Friction Behaviors between Graphene and a Gold Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Pressure Effect
3.2. Velocity Effect
3.3. Temperature Effect
3.4. Effect of the Ratio of Contact Areas
3.5. Relative Rotation Angle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Pressure (GPa) | Boundary Surface (Å) | First Surface (Å) | Second Surface (Å) |
---|---|---|---|
1.19 | 2.5 ± 0.5 | 2.7 ± 0.2 | 3.4 ± 0.2 |
2.38 | 3.4 ± 0.6 | 3.1 ± 0.3 | 4.1 ± 0.3 |
3.57 | 4.7 ± 0.7 | 3.7 ± 0.4 | 5.0 ± 0.3 |
Pressure (GPa) | Boundary Surface (nN) | First Surface (nN) | Second Surface (nN) |
---|---|---|---|
1.19 | 0.61 ± 0.07 | 1.16 ± 0.13 | 1.29 ± 0.03 |
2.38 | 1.10 ± 0.15 | 1.75 ± 0.17 | 1.95 ± 0.07 |
3.57 | 1.84 ± 0.31 | 2.24 ± 0.31 | 2.69 ± 0.07 |
Velocity (m/s) | Boundary Surface (nN) | First Surface (nN) | Second Surface (nN) |
---|---|---|---|
5 | 1.90 ± 0.30 | 2.18 ± 0.24 | 2.57 ± 0.06 |
10 | 1.84 ± 0.31 | 2.24 ± 0.31 | 2.69 ± 0.07 |
20 | 1.91 ± 0.22 | 2.08 ± 0.26 | 2.49 ± 0.09 |
Temperature (K) | Boundary Surface (nN) | First Surface (nN) | Second Surface (nN) |
---|---|---|---|
100 | 1.56 ± 0.14 | 2.18 ± 0.22 | 2.65 ± 0.12 |
200 | 1.73 ± 0.29 | 2.28 ± 0.25 | 2.65 ± 0.12 |
300 | 1.84 ± 0.31 | 2.24 ± 0.31 | 2.69 ± 0.07 |
Rotation Angle | Boundary Surface (nN) | First Surface (nN) | Second Surface (nN) |
---|---|---|---|
Zigzag direction | 1.09 ± 0.28 | 0.42 ± 0.31 | 0.09 ± 0.02 |
10° | 0.38 ± 0.20 | 0.24 ± 0.16 | 0.15 ± 0.03 |
20° | 0.59 ± 0.16 | 0.14 ± 0.11 | 0.05 ± 0.01 |
Armchair direction | 1.80 ± 0.38 | 0.05 ± 0.05 | 3.40 ± 0.51 |
References
- Wang, P.; Cao, Q.; Yan, Y.; Nie, Y.; Liu, S.; Peng, Q. Graphene surface reinforcement of iron. Nanomaterials 2019, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cao, Q.; Peng, Q.; Liu, S. Atomistic study of mechanical behaviors of carbon honeycombs. Nanomaterials 2019, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Pallecchi, E.; Lafont, F.; Cavaliere, V.; Schopfer, F.; Mailly, D.; Poirier, W.; Ouerghi, A. High electron mobility in epitaxial graphene on 4H-SiC(0001) via post-growth annealing under hydrogen. Sci. Rep. 2014, 4, 4558. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.M.; Castro Neto, A.H. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett. 2009, 103, 046801. [Google Scholar] [CrossRef] [PubMed]
- Koenig, S.P.; Boddeti, N.G.; Dunn, M.L.; Bunch, J.S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011, 6, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Cao, Q.; Liu, S.; Peng, Q. Atomic structure and mechanical properties of twisted bilayer graphene. J. Compos. Sci. 2018, 3, 2. [Google Scholar] [CrossRef]
- Cao, Q.; Geng, X.; Wang, H.; Wang, P.; Liu, A.; Lan, Y.; Peng, Q. A review of current development of graphene mechanics. Crystals 2018, 8, 357. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Lei, S.; Cao, Q.; Geng, X.; Yang, Y.; Liu, S.; Peng, Q. The mechanical properties of defective graphyne. Crystals 2018, 8, 465. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Traversi, F.; Raillon, C.; Benameur, S.M.; Liu, K.; Khlybov, S.; Tosun, M.; Krasnozhon, D.; Kis, A.; Radenovic, A. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 2013, 8, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Margine, E.R.; Bocquet, M.L.; Blase, X. Thermal stability of graphene and nanotube covalent functionalization. Nano Lett. 2008, 8, 3315–3319. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Kravets, V.G.; Wong, S.L.; Waters, J.; Geim, A.K.; Nair, R.R. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 2014, 5, 4843. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Asay, D.B.; Dugger, M.T. Nanotribology and MEMS. Nano Today 2007, 2, 22–29. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Q.; Dai, Y.; Qian, Z.; Liu, S. Distinctive nanofriction of graphene coated copper foil. Comput. Mater. Sci. 2016, 117, 406–411. [Google Scholar] [CrossRef]
- Liu, Y.; Grey, F.; Zheng, Q. The high-speed sliding friction of graphene and novel routes to persistent superlubricity. Sci Rep. 2014, 4, 4875. [Google Scholar] [CrossRef] [Green Version]
- Lodge, M.S.; Tang, C.; Blue, B.T.; Hubbard, W.A.; Martini, A.; Dawson, B.D.; Ishigami, M. Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance. Sci Rep. 2016, 6, 31837. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Balkanci, A.; Martini, A.; Baykara, M.Z. Effect of roughness on the layer-dependent friction of few-layer graphene. Phys. Rev. B 2017, 96, 115401. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Smolyanitsky, A.; Li, Q.; Feng, X.Q.; Cannara, R.J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 2012, 11, 1032. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, W.; Tour, J.M.; Lou, J. Nanoscale frictional characteristics of graphene nanoribbons. Appl. Phys. Lett. 2012, 101, 123104. [Google Scholar] [CrossRef]
- Paolicelli, G.; Tripathi, M.; Corradini, V.; Candini, A.; Valeri, S. Nanoscale frictional behavior of graphene on SiO2 and Ni(111) substrates. Nanotechnology 2015, 26, 055703. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Martini, A. Atomistic simulation of the load dependence of nanoscale friction on suspended and supported graphene. Langmuir 2014, 30, 14707–14711. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wu, X.; Martini, A. Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 2013, 24, 375701. [Google Scholar] [CrossRef] [PubMed]
- Kitt, A.L.; Qi, Z.; Remi, S.; Park, H.S.; Swan, A.K.; Goldberg, B.B. How graphene slides: Measurement and theory of strain-dependent frictional forces between graphene and SiO2. Nano Lett 2013, 13, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Benassi, A.; Gnecco, E.; Söde, H.; Pawlak, R.; Feng, X.; Müllen, K.; Passerone, D.; Pignedoli, C.A.; Ruffieux, P.; et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 2016, 351, 957. [Google Scholar] [CrossRef] [PubMed]
- Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R. Graphene nanoribbons on gold: Understanding superlubricity and edge effects. 2D Mater. 2017, 4, 045003. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Graphene: A new emerging lubricant. Mater. Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Z.; Zou, K. Friction and wear properties of different types of graphene nanosheets as effective solid lubricants. Langmuir 2015, 31, 7782–7791. [Google Scholar] [CrossRef]
- Kim, K.-S.; Lee, H.-J.; Lee, C.; Lee, S.-K.; Jang, H.; Ahn, J.-H.; Kim, J.-H.; Lee, H.-J. Chemical vapor deposition-grown graphene: The thinnest solid lubricant. Acs Nano 2011, 5, 5107–5114. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 2013, 54, 454–459. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, G.; Cheng, Z.; Ma, F.; Lu, Z. Atomic-scale friction adjustment enabled by doping-induced modification in graphene nanosheet. Appl. Surf. Sci. 2019, 483, 742–749. [Google Scholar] [CrossRef]
- Ye, Z.; Tang, C.; Dong, Y.; Martini, A. Role of wrinkle height in friction variation with number of graphene layers. J. Appl. Phys. 2012, 112, 116102. [Google Scholar] [CrossRef]
- Long, F.; Yasaei, P.; Yao, W.; Salehi-Khojin, A.; Shahbazian-Yassar, R. Anisotropic friction of wrinkled graphene grown by chemical vapor deposition. Acs Appl. Mater. Interfaces 2017, 9, 20922–20927. [Google Scholar] [CrossRef]
- Ko, J.-H.; Kwon, S.; Byun, I.-S.; Choi, J.S.; Park, B.H.; Kim, Y.-H.; Park, J.Y. Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol. Lett. 2013, 50, 137–144. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, Y.; Yu, M.; Lang, H.; Cao, X.A.; Zou, K. Dynamic sliding enhancement on the friction and adhesion of graphene, graphene oxide, and fluorinated graphene. Acs Appl. Mater. Interfaces 2018, 10, 8214–8224. [Google Scholar] [CrossRef]
- Kwon, S.; Ko, J.H.; Jeon, K.J.; Kim, Y.H.; Park, J.Y. Enhanced nanoscale friction on fluorinated graphene. Nano Lett 2012, 12, 6043–6048. [Google Scholar] [CrossRef]
- Smolyanitsky, A.; Killgore, J.P.; Tewary, V.K. Effect of elastic deformation on frictional properties of few-layer graphene. Phys. Rev. B 2012, 85, 035412. [Google Scholar] [CrossRef]
- Koren, E.; Lörtscher, E.; Rawlings, C.; Knoll, A.W.; Duerig, U. Adhesion and friction in mesoscopic graphite contacts. Science 2015, 348, 679–683. [Google Scholar] [CrossRef]
- Smolyanitsky, A. Effects of thermal rippling on the frictional properties of free-standing graphene. Rsc Adv. 2015, 5, 29179–29184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, M.; Gueye, B.; Ni, Z.; Wang, Y.; Chen, Y. Temperature effects on the friction characteristics of graphene. Appl. Phys. Lett. 2015, 107, 011601. [Google Scholar] [CrossRef]
- Zhu, P.; Li, R. Study of nanoscale friction behaviors of graphene on gold substrates using molecular dynamics. Nanoscale Res. Lett. 2018, 13, 34. [Google Scholar] [CrossRef]
- Cakmakyapan, S.; Lu, P.K.; Navabi, A.; Jarrahi, M. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Sci. Appl. 2018, 7, 20. [Google Scholar] [CrossRef]
- Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016, 11, 566. [Google Scholar] [CrossRef]
- Liu, W.; Hu, B.; Du, Z.; Wang, Z.; Zhou, X.; Liu, J.; Wang, Y. Enhanced electric tuning of raman scattering in monolayer graphene by gold nanorods. Plasmonics 2017, 13, 275–280. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Meng, F.; Yang, Y.; Lu, C.; Deng, H.; Wang, L.; De, S.; Gao, F. Shockwave generates dislocation loops in bcc iron. Nat. Commun. 2018, 9, 4880. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Q.; Martini, A. Molecular dynamics simulation of atomic friction: A review and guide. J. Vac. Sci. Technol. A 2013, 31, 030801. [Google Scholar] [CrossRef]
- Lee, C.; Li, Q.; Kalb, W.; Liu, X.-Z.; Berger, H.; Carpick, R.W.; Hone, J. Frictional Characteristics of Atomically Thin Sheets. Science 2010, 328, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.W.; Johnson, R.A.; Wadley, H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 2004, 69, 144113. [Google Scholar] [CrossRef] [Green Version]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Hou, J.; Zhu, H.; Liu, S.; Liu, E.; Shi, Y.; Peng, Q. The normal-auxeticity mechanical phase transition in graphene. 2D Mater. 2017, 4, 021020. [Google Scholar] [CrossRef]
- Xu, Z.; Buehler, M.J. Interface structure and mechanics between graphene and metal substrates: A first-principles study. J. Phys. Condens. Matter 2010, 22, 485301. [Google Scholar] [CrossRef]
- van Wijk, M.M.; Dienwiebel, M.; Frenken, J.W.M.; Fasolino, A. Superlubric to stick-slip sliding of incommensurate graphene flakes on graphite. Phys. Rev. B 2013, 88, 235423. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Egberts, P.; Han, G.H.; Johnson, A.T.C.; Carpick, R.W.; Martini, A. Load-dependent friction hysteresis on graphene. Acs Nano 2016, 10, 5161–5168. [Google Scholar] [CrossRef]
- Gnecco, E.; Bennewitz, R.; Gyalog, T.; Loppacher, C.; Bammerlin, M.; Meyer, E.; Güntherodt, H.J. Velocity Dependence of Atomic Friction. Phys. Rev. Lett. 2000, 84, 1172–1175. [Google Scholar] [CrossRef]
- Li, Q.; Dong, Y.; Perez, D.; Martini, A.; Carpick, R.W. Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 2011, 106, 126101. [Google Scholar] [CrossRef]
- Tripathi, M.; Awaja, F.; Paolicelli, G.; Bartali, R.; Iacob, E.; Valeri, S.; Ryu, S.; Signetti, S.; Speranza, G.; Pugno, N.M. Tribological characteristics of few-layer graphene over Ni grain and interface boundaries. Nanoscale 2016, 8, 6646–6658. [Google Scholar] [CrossRef] [Green Version]
- Riedo, E.; Gnecco, E.; Bennewitz, R.; Meyer, E.; Brune, H. Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett 2003, 91, 084502. [Google Scholar] [CrossRef]
- Yong, C.; Shiwei, W.; Lu, X.; Pengzhe, Z.; Rui, L.; Qing, P. Grain size and hydroxyl-coverage dependent tribology of polycrystalline graphene. Nanotechnology 2019, 30, 385701. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Cao, Q.; Wang, P.; Wang, H.; Zheng, S.; Lei, S.; Liu, S.; Peng, Q. A Grain Boundary Regulates the Friction Behaviors between Graphene and a Gold Substrate. Crystals 2019, 9, 418. https://doi.org/10.3390/cryst9080418
He P, Cao Q, Wang P, Wang H, Zheng S, Lei S, Liu S, Peng Q. A Grain Boundary Regulates the Friction Behaviors between Graphene and a Gold Substrate. Crystals. 2019; 9(8):418. https://doi.org/10.3390/cryst9080418
Chicago/Turabian StyleHe, Pinxuan, Qiang Cao, Pengjie Wang, Huaipeng Wang, Shaolong Zheng, Shuting Lei, Sheng Liu, and Qing Peng. 2019. "A Grain Boundary Regulates the Friction Behaviors between Graphene and a Gold Substrate" Crystals 9, no. 8: 418. https://doi.org/10.3390/cryst9080418
APA StyleHe, P., Cao, Q., Wang, P., Wang, H., Zheng, S., Lei, S., Liu, S., & Peng, Q. (2019). A Grain Boundary Regulates the Friction Behaviors between Graphene and a Gold Substrate. Crystals, 9(8), 418. https://doi.org/10.3390/cryst9080418