Sometimes the Same, Sometimes Different: Understanding Self-Assembly Algorithms in Coordination Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Compound 3a
2.3. Compound 4a
2.4. Compound 5a
2.5. Compound 3b
2.6. Compound 5b
2.7. Compound 3
2.8. Compound 4
2.9. Compound 5
2.10. {[Co(NCS)2(3)]·0.8C6H4Cl2}n
2.11. {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n
2.12. [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH
2.13. Crystallography
3. Results
3.1. Synthesis and Characterization of Ligands
3.2. Crystal Growth
3.3. {[Co(NCS)2(3)]·0.8C6H4Cl2}n and {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n
3.4. [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Biradha, K.; Sarkar, M.; Rajput, L. Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal ions. Chem. Commun. 2006, 4169–4179. [Google Scholar] [CrossRef]
- Ye, B.-H.; Tong, M.-L.; Chen, X.-M. Metal-organic molecular architectures with 2,2′-bipyridyl-like and carboxylate ligands. Coord. Chem Rev. 2005, 249, 545–565. [Google Scholar] [CrossRef]
- Constable, E.C.; Housecroft, C.E. Ligand and Metalloligand Design for Macrocycles, Multimetallic Arrays, Coordination Polymers and Assemblies. In Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Reedijk, J., Ed.; Elsevier: Waltham, MA, USA, 2016. [Google Scholar]
- Byrne, J.P.; Kitchen, J.A.; Gunnlaugsson, T. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: A new versatile terdentate ligand for suprmolecualr and coordination chemistry. Chem. Soc. Rev. 2014, 43, 5302–5325. [Google Scholar] [CrossRef] [PubMed]
- Adarsh, N.N.; Dastidar, P. Coordination polymers: What has been achieved in going from innocent 4,4′-bipyridine to bis-pyridyl ligands having a non-innocent backbone? Chem. Soc. Rev. 2012, 41, 3039–3060. [Google Scholar] [CrossRef]
- Constable, E.C. Coordination Polymers. In Supramolecular Chemistry: From Molecules to Nanomaterials; Reedijk, J., Ed.; Elsevier: Waltham, MA, USA, 2016; Volume 6, p. 3073. [Google Scholar]
- Janiak, C.; Veith, J.K. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388. [Google Scholar] [CrossRef]
- Constable, E.C. Expanded ligands–An assembly principle for supramolecular chemistry. Coord. Chem. Rev. 2008, 252, 842–855. [Google Scholar] [CrossRef]
- Chakroborty, S.; Newkome, G.R. Terpyridine-based metallosupramolecular constructs: Tailored monomers to precise 2D-motifs and 3D-metallocages. Chem. Soc. Rev. 2018, 47, 3991–4016. [Google Scholar] [CrossRef]
- Housecroft, C.E. 4,2′:6′,4′′-Terpyridines: Diverging and diverse building blocks in coordination polymers and metallomacrocycles. Dalton Trans. 2014, 43, 6594–6604. [Google Scholar] [CrossRef]
- Housecroft, C.E. Divergent 4,2′:6′,4′′- and 3,2′:6′,3′′-terpyridines as linkers in 2- and 3-dimensional architectures. CrystEngComm 2015, 17, 7461–7468. [Google Scholar] [CrossRef] [Green Version]
- Constable, E.C.; Housecroft, C.E. Tetratopic bis(4,2′:6′,4′′-terpyridine) and bis(3,2′:6′,3′′-terpyridine) ligands as 4-connecting nodes in 2D-coordination networks and 3D-frameworks. J. Inorg. Organomet. Polym. Mater. 2018, 28, 414–427. [Google Scholar] [CrossRef]
- Klein, Y.M.; Prescimone, A.; Pitak, M.B.; Coles, S.J.; Constable, E.C.; Housecroft, C.E. Constructing chiral MOFs by functionalizing 4,2′:6′,4′′-terpyridine with long-chain alkoxy domains: Rare examples of neb nets. CrystEngComm 2016, 18, 4704–4707. [Google Scholar] [CrossRef]
- Liu, C.; Ding, Y.-B.; Shi, X.-H.; Zhang, D.; Hu, M.-H.; Yin, Y.-G.; Li, D. Interpenetrating Metal−Organic Frameworks Assembled from Polypyridine Ligands and Cyanocuprate Catenations. Cryst. Growth Des. 2009, 9, 1275–1277. [Google Scholar] [CrossRef]
- Yang, P.; Wang, M.-S.; Shen, J.-J.; Li, M.-X.; Wang, Z.-X.; Shao, M.; He, X. Seven novel coordination polymers constructed by rigid 4-(4-carboxyphenyl)-terpyridine ligands: Synthesis, structural diversity, luminescence and magnetic properties. Dalton Trans. 2014, 43, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, C.-J.; He, J.-E.; Chen, Y.-Y.; Zheng, S.-R.; Fan, J.; Zhang, W.-G. Construction of New Coordination Polymers from 4′-(2,4-disulfophenyl)- 3,2′:6′,3′′-terpyridine: Polymorphism, pH-dependent syntheses, structures, and properties. J. Solid State Chem. 2016, 233, 444–454. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, M.-L.; Hu, H.-M.; Xu, B.; Wang, X.; Xue, G. Syntheses, structures and luminescence for zinc coordination polymers based on a multifunctional 4′-(3-carboxyphenyl)-3,2′:6′,3′′-terpyridine ligand. J. Solid State Chem. 2016, 239, 121–130. [Google Scholar] [CrossRef]
- Li, N.; Zhu, Q.-E.; Hu, H.-M.; Guo, H.-L.; Xie, J.; Wang, F.; Dong, F.-X.; Yang, M.-L.; Xue, G.-L. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) coordination polymers constructed by bifunctional 4′-(4-carboxyphenyl)-3,2′:6′,3′′-terpyridine. Polyhedron 2013, 49, 207–215. [Google Scholar] [CrossRef]
- Chen, N.; Li, M.-X.; Yang, P.; He, X.; Shao, M.; Zhu, S.-R. Chiral coordination polymers with SHG-active and luminescence: An unusual homochiral 3D MOF constructed from achiral components. Cryst. Growth Des. 2013, 13, 2650–2660. [Google Scholar] [CrossRef]
- Klein, Y.M.; Constable, E.C.; Housecroft, C.E.; Prescimone, A. A 3-dimensional {42.84} lvt net built from a ditopic bis(3,2′:6′,3′′-terpyridine) tecton bearing long alkyl tails. CrystEngComm 2015, 17, 2070–2073. [Google Scholar] [CrossRef]
- Klein, Y.M.; Lanzilotto, A.; Prescimone, A.; Krämer, K.W.; Decurtins, S.; Liu, S.-X.; Constable, E.C.; Housecroft, C.E. Coordination behaviour of 1-(3,2′:6′,3′′-terpyridin-4′-yl)ferrocene: Structure and magnetic and electrochemical properties of a tetracopper dimetallomacrocycle. Polyhedron 2017, 129, 71–76. [Google Scholar] [CrossRef]
- Zhao, M.; Tan, J.; Su, J.; Zhang, J.; Zhang, S.; Wu, J.; Tian, Y. Syntheses, crystal structures and third-order nonlinear optical properties of two series of Zn(II) complexes using the thiophene-based terpyridine ligands. Dyes Pigments 2016, 130, 216–225. [Google Scholar] [CrossRef]
- Constable, E.C.; Housecroft, C.E.; Vujovic, S.; Zampese, J.A. 2D→2D Parallel interpenetration of (4,4) sheets constructed from a ditopic bis(4,2′:6′,4′′-terpyridine). CrystEngComm 2014, 16, 3494–3497. [Google Scholar] [CrossRef]
- Vujovic, S.; Constable, E.C.; Housecroft, C.E.; Morris, C.D.; Neuburger, M.; Prescimone, A. Engineering 2D→2D parallel interpenetration using long alkoxy-chain substituents. Polyhedron 2015, 92, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Klein, Y.M.; Prescimone, A.; Neuburger, M.; Constable, E.C.; Housecroft, C.E. What a difference a tail makes: 2D→2D parallel interpenetration of sheets to interpenetrated nbo networks using ditopic-4,2′:6′,4′′-terpyridine ligands. CrystEngComm 2017, 19, 2894–2902. [Google Scholar] [CrossRef]
- Batten, S.R.; Neville, S.M.; Turner, D.R. Coordination Polymers: Design, Analysis and Application; RSC Publishing: Cambridge, UK, 2009; Chapter 2; ISBN 978-0-85404-837-3. [Google Scholar]
- Li, D.-S.; Wua, Y.-P.; Zhao, J.; Zhang, J.; Lu, J.Y. Metal-organic frameworks based upon non-zeotype 4-connected topology. Coord. Chem. Rev. 2014, 261, 1–27. [Google Scholar] [CrossRef]
- Klein, Y.M.; Prescimone, A.; Constable, E.C.; Housecroft, C.E. 4,2′:6′,4′′- and 3,2′:6′,3′′-terpyridines: The conflict between well-defined vectorial properties and serendipity in the assembly of 1D-, 2D- and 3D-architectures. Materials 2017, 10, 728. [Google Scholar] [CrossRef]
- Prasad, T.K.; Suh, M.P. Metal-organic frameworks incorporating various alkoxy pendant groups: Hollow tubular morphologies, X-ray single-crystal structures, and selective carbon dioxide adsorption properties. Chem. Asian J. 2015, 10, 2257–2263. [Google Scholar] [CrossRef]
- Kuhnert, N.; Lopez-Periago, A.; Rossignolo, G.M. The synthesis and conformation of oxygenated trianglimine macrocycles. Org. Biomol. Chem. 2005, 3, 524–537. [Google Scholar] [CrossRef]
- Bruker Analytical X-ray Systems, Inc. APEX2, version 2 User Manual, M86-E01078; Bruker Analytical X-ray Systems, Inc.: Madison, WI, USA, 2006. [Google Scholar]
- Palatinus, L.; Chapuis, G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Cryst. 2003, 36, 1487. [Google Scholar] [CrossRef]
- Bruno, I.J.; Cole, J.C.; Edgington, P.R.; Kessler, M.K.; Macrae, C.F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Cryst. B 2002, 58, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Wang, J.; Hanan, G.S. A facile route to sterically hindered and non-hindered 4′-aryl-2,2′:6′,2′′-terpyridines. Synlett 2005, 1251–1254. [Google Scholar] [CrossRef]
- Lee, I.S.; Shin, D.M.; Chung, Y.K. Novel supramolecular isomerism in coordination polymer synthesis from unsymmetrical bridging ligands: Solvent influence on the ligand placement orientation and final network structure. Chem. Eur. J. 2004, 10, 3158–3165. [Google Scholar] [CrossRef]
- Suckert, S.; Jess, I.; Näther, C. Crystal structure of bis (3,5-di methyl pyridine-κN)bis (methanol-κO)bis (thiocyanato-κN)cobalt(II). Acta Crystallogr. Sect. E 2016, 72, 1824–1826. [Google Scholar] [CrossRef]
- Suckert, S.; Werner, J.; Jess, I.; Näther, C. Crystal structure of bis(4-benzoylpyridine-κN)bis(methanol-κO)bis(thiocyanato-κN)cobalt(II). Acta Crystallogr. Sect. E 2017, 73, 616–619. [Google Scholar] [CrossRef]
- Yang, G.-R.; Ren, J.; Li, G.-T. Bis{N(2),N(6)-bis-[(pyridin-3-yl)methyl]pyridine-2,6-dicarboxamide- κN}bis(methanol-κO)bis(thiocyanato-κN)cobalt(II). Acta Crystallogr. Sect. E 2012, 68, m765. [Google Scholar] [CrossRef]
- Robert, F.; Naik, A.D.; Tinant, B.; Robiette, R.; Garcia, Y. Insights into the origin of solid-state photochromism and thermochromism of N-salicylideneanils: The intruging case of aminopyridines. Chem. Eur. J. 2009, 15, 4327–4342. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, B.-L.; Niu, Y.-Y.; Zhang, H.-Y.; Niu, C.-Y.; Hou, H.-W. Synthesis, crystal structure and properties of the enantiotopic complex constructed from chiral ligand H2bpb, [Co(H2bpb)2(NCS)2(CH3OH)2] (H2bpb = 1,2-bis(3-pyridylcarboxamide)benzene). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2007, 37, 577–582. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Zhang, S.; Zheng, S.; Golen, J.A.; Rheingold, A.L.; Zhang, G. Cobalt(II) coordination polymers versus discrete complex with 4,2′:6′,4′′-terpyridine ligands: The role of a pyrenyl substituent. Polyhedron 2015, 101, 139–145. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [Google Scholar] [CrossRef]
Bond Parameter | {[Co(NCS)2(3)]·0.8C6H4Cl2}n | {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n |
---|---|---|
Distance/Å | ||
Co1–N1 | 2.208 (2) | 2.238 (4) |
Co1–N4 | 2.062 (3) | 2.065 (4) |
Co1–N3v | 2.179 (2) | 2.169 (4) |
Angle/deg | ||
N1–Co1–N4 | 90.18 (10) | 88.67 (15) |
N3v–Co1–N1 | 84.73 (9) | 93.81 (17) |
N3v–Co1–N4 | 90.20 (11) | 90.32 (16) |
N3vi–Co1–N1 | 95.27 (9) | 86.19 (17) |
N3vi–Co1–N4 | 89.80 (11) | 89.68 (16) |
N1iv–Co1–N4 | 89.82 (10) | 91.33 (15) |
Compound | Dihedral Angle between Planes/Deg | ||
---|---|---|---|
Ring with N1/Ring with N2 | Ring with N2/Ring with N3 | Ring with N2/Phenylene Ring | |
{[Co(NCS)2(3)]·0.8C6H4Cl2}n | 25.3 | 30.7 | 40.2 |
{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n | 34.6 | 6.4 | 44.3 |
{[Co(NCS)2(1d)]·2C6H4Cl2}n | 19.5 | 31.3 | 40.5 |
{[Co(NCS)2(2a)]·4CHCl3}n | 29.9; 22.7 | 12.7; 12.2 | 58.5; 55.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, Y.M.; Prescimone, A.; Karpacheva, M.; Constable, E.C.; Housecroft, C.E. Sometimes the Same, Sometimes Different: Understanding Self-Assembly Algorithms in Coordination Networks. Polymers 2018, 10, 1369. https://doi.org/10.3390/polym10121369
Klein YM, Prescimone A, Karpacheva M, Constable EC, Housecroft CE. Sometimes the Same, Sometimes Different: Understanding Self-Assembly Algorithms in Coordination Networks. Polymers. 2018; 10(12):1369. https://doi.org/10.3390/polym10121369
Chicago/Turabian StyleKlein, Y. Maximilian, Alessandro Prescimone, Mariia Karpacheva, Edwin C. Constable, and Catherine E. Housecroft. 2018. "Sometimes the Same, Sometimes Different: Understanding Self-Assembly Algorithms in Coordination Networks" Polymers 10, no. 12: 1369. https://doi.org/10.3390/polym10121369
APA StyleKlein, Y. M., Prescimone, A., Karpacheva, M., Constable, E. C., & Housecroft, C. E. (2018). Sometimes the Same, Sometimes Different: Understanding Self-Assembly Algorithms in Coordination Networks. Polymers, 10(12), 1369. https://doi.org/10.3390/polym10121369