Morphological Structure, Rheological Behavior, Mechanical Properties and Sound Insulation Performance of Thermoplastic Rubber Composites Reinforced by Different Inorganic Fillers
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Sample Preparation
2.2. Morphology Characterization
2.3. Rheology and Mechanical Properties
2.4. Sound Insulation Property
2.5. Density Test
3. Results and Discussion
3.1. Viscous Behavior
3.2. Morphology
3.3. Sound Insulation Property
3.4. Mechanical Properties
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sinay, J.; Balazikova, M. Acoustic Risk Management. Hum. Factors Ergon. Manuf. Serv. Ind. 2014, 24, 298–307. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, G.S.; Chen, X.R.; He, X.R. Advances in sound absorption polymers. Prog. Chem. 2004, 16, 450–455. [Google Scholar]
- Kuang, T.R.; Chang, L.Q.; Chen, F.; Sheng, Y.; Fu, D.J.; Peng, X.F. Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 2016, 105, 305–313. [Google Scholar] [CrossRef]
- Kuang, T.R.; Chen, F.; Chang, L.Q.; Zhao, Y.N.; Fu, D.J.; Gong, X.; Peng, X.F. Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem. Eng. J. 2017, 307, 1017–1025. [Google Scholar] [CrossRef]
- Kuang, T.R.; Li, K.C.; Chen, B.Y.; Peng, X.F. Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Compos. Part B Eng. 2017, 123, 112–123. [Google Scholar] [CrossRef]
- Geng, L.H.; Li, L.W.; Mi, H.Y.; Chen, B.Y.; Sharma, P.; Ma, H.Y.; Hsiao, B.S.; Peng, X.F.; Kuang, T.R. Superior Impact Toughness and Excellent Storage Modulus of Poly(lactic acid) Foams Reinforced by Shish-Kebab Nanoporous Structure. ACS Appl. Mater. Interfaces 2017, 9, 21071–21076. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Wang, Y.J.; Kuang, T.R. ZIF-8-Based Membranes for Carbon Dioxide Capture and Separation. ACS Sustain. Chem. Eng. 2017, 5, 11204–11214. [Google Scholar] [CrossRef]
- Li, W.; Kuang, T.R.; Jiang, X.P.; Yang, J.T.; Fan, P.; Zhao, Z.P.; Fei, Z.D.; Zhong, M.Q.; Chang, L.Q.; Chen, F. Photoresponsive polyelectrolyte/mesoporous silica hybrid materials with remote-controllable ionic transportation. Chem. Eng. J. 2017, 322, 445–453. [Google Scholar] [CrossRef]
- Kuang, T.R.; Mi, H.Y.; Fu, D.J.; Jing, X.; Chen, B.Y.; Mou, W.J.; Peng, X.F. Fabrication of Poly(lactic acid)/Graphene Oxide Foams with Highly Oriented and Elongated Cell Structure via Unidirectional Foaming Using Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2015, 54, 758–768. [Google Scholar] [CrossRef]
- Peng, X.F.; Chen, J.W.; Kuang, T.R.; Yu, P.; Huang, J.N. Simultaneous reinforcing and toughening of high impact polystyrene with a novel processing method of loop oscillating push-pull molding. Mater. Lett. 2014, 123, 55–58. [Google Scholar] [CrossRef]
- Kuang, T.R.; Chen, F.; Fu, D.J.; Chang, L.Q.; Peng, X.F.; Lee, L.J. Enhanced strength and foamability of high-density polyethylene prepared by pressure-induced flow and low-temperature crosslinking. RSC Adv. 2016, 6, 34422–34427. [Google Scholar] [CrossRef]
- Wang, Y.J.; Gong, X. Superhydrophobic Coatings with Periodic Ring Structured Patterns for Self-Cleaning and Oil-Water Separation. Adv. Mater. Interfaces 2017, 4. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.M.; Chang, J.M.; Yao, Y.; Cui, Q. Sound insulation property of wood-waste tire rubber composite. Compos. Sci. Technol. 2010, 70, 2033–2038. [Google Scholar] [CrossRef]
- Liang, J.Z.; Jiang, X.H. Soundproofing effect of polypropylene/inorganic particle composites. Compos. Part B Eng. 2012, 43, 1995–1998. [Google Scholar] [CrossRef]
- Wu, X.F.; Zhao, Y.K.; Zhang, D.; Chen, T.B.; Ma, L.Y. Preparation of Carbon Nanotubes/Epoxy Resin Composites by Using Hollow Glass Beads as the Carrier. J. Chem. Soc. Pak. 2012, 34, 1539–1543. [Google Scholar]
- Xu, L.; Han, T.; Li, J.; Xiong, Y.; Guo, S. The cell growth-induced orientation of mica in lightweight flexible poly (vinyl chloride) foams and its enhancement on sound insulation. Compos. Sci. Technol. 2017, 145, 78–88. [Google Scholar] [CrossRef]
- Nakaramontri, Y.; Kummerlowe, C.; Nakason, C.; Vennemann, N. The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites. Polym. Compos. 2015, 36, 2113–2122. [Google Scholar] [CrossRef]
- Liu, X.-H.; Duan, J.; Yang, J.-H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z.-W. Hydrophilicity, morphology and excellent adsorption ability of poly(vinylidene fluoride) membranes induced by graphene oxide and polyvinylpyrrolidone. Colloids Surf. A Physicochem. Eng. Asp. 2015, 486, 172–184. [Google Scholar] [CrossRef]
- Shen, J.Y.; Wang, M.J.; Wu, Y.N.; Li, F.T. Preparation of mesoporous carbon nanofibers from the electrospun poly(furfuryl alcohol)/poly(vinyl acetate)/silica composites. RSC Adv. 2014, 4, 21089–21092. [Google Scholar] [CrossRef]
- Chen, W.S.; Qiu, X.J. Sound insulation character of three-layer panels one with elastic porous material. Appl. Acoust. 2008, 27, 118–124. [Google Scholar]
- Li, T.T.; Lou, C.W.; Huang, C.H.; Huang, C.L.; Lin, J.H. Thermoplastic polyurethanes/polyester/polypropylene composites: Effect of thermoplastic polyurethanes honeycomb structure on acoustic-absorbing and cushioning property. J. Ind. Text. 2016, 46, 578–595. [Google Scholar] [CrossRef]
- Huang, C.H.; Lin, J.H.; Chuang, Y.C. Manufacturing process and property evaluation of sound-absorbing and thermal-insulating polyester fiber/polypropylene/thermoplastic polyurethane composite board. J. Ind. Text. 2013, 43, 627–640. [Google Scholar] [CrossRef]
- Xia, L.; Wu, H.; Guo, S.; Sun, X.; Liang, W. Enhanced sound insulation and mechanical properties of LDPE/mica composites through multilayered distribution and orientation of the mica. Compos. Part A Appl. Sci. Manuf. 2016, 81, 225–233. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, M.; Wu, H.; Guo, S.; Sun, X.; Liang, W. Preparation of a new foam/film structure poly (ethylene-co-octene) foam materials and its sound absorption properties. Mater. Lett. 2015, 139, 275–278. [Google Scholar] [CrossRef]
- Grigoryeva, O.P.; Fainleib, A.M.; Tolstov, A.L.; Starostenko, O.M.; Lievana, E.; Karger-Kocsis, J. Thermoplastic elastomers based on recycled high-density polyethylene, ethylene-propylene-diene monomer rubber, and ground tire rubber. J. Appl. Polym. Sci. 2005, 95, 659–671. [Google Scholar] [CrossRef]
- Bagley, E.B. End Corrections in the Capillary Flow of Polyethylene. J. Appl. Phys. 1957, 28, 624–627. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, L.; Luo, P.; Jiang, J.; Wu, G. Effect of melt flow on morphology and linear thermal expansion of injection-molded ethylene–propylene–diene terpolymer/isotactic polypropylene blends. Polym. Int. 2015, 64, 1225–1234. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Zhang, Y.; Huang, Z.; Ying, J.; Xie, X.; Zhou, H. Experimental Investigation of the Effects of Process Conditions on the Morphology in Injection Molding of Polymer Blends. Adv. Polym. Technol. 2015, 27. [Google Scholar] [CrossRef]
- Yeh, J.T.; Lin, S.C. Optimized Processing Conditions for the Preparation of Dynamically Vulcanized EPDM/PP Thermoplastic Elastomers Containing PP Resins of Various Melt Indexes. J. Appl. Polym. Sci. 2010, 114, 2806–2815. [Google Scholar] [CrossRef]
- Li, Y.; Shimizu, H. High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 2007, 48, 2203–2207. [Google Scholar] [CrossRef]
- Benkreira, H.; Khan, A.; Horoshenkov, K.V. Sustainable acoustic and thermal insulation materials from elastomeric waste residues. Chem. Eng. Sci. 2011, 66, 4157–4171. [Google Scholar] [CrossRef]
- Ghofrani, M.; Ashori, A.; Rezvani, M.H.; Arbabi Ghamsari, F. Acoustical properties of plywood/waste tire rubber composite panels. Measurement 2016, 94, 382–387. [Google Scholar] [CrossRef]
- Lapčík, L.; Maňas, D.; Vašina, M.; Lapčíková, B.; Řezníček, M.; Zádrapa, P. High density poly(ethylene)/CaCO3 hollow spheres composites for technical applications. Compos. Part B Eng. 2017, 113, 218–224. [Google Scholar] [CrossRef]
- Sun, X.; Liang, W. Cellular structure control and sound absorption of polyolefin microlayer sheets. Compos. Part B Eng. 2016, 87, 21–26. [Google Scholar] [CrossRef]
- Ng, C.F.; Hui, C.K. Low frequency sound insulation using stiffness control with honeycomb panels. Appl. Acoust. 2008, 69, 293–301. [Google Scholar] [CrossRef]
- Yang, M.S.; Li, L.K. Preparation of high-rigidity, high-toughness unplasticized poly(vinyl chloride) for plastic windows profiles reinforced and toughened by nano-CaCO3. In Applied Mechanics and Materials; Trans Tech Publications: Zurich, Switzerland, 2011; Volume 71, pp. 1237–1241. [Google Scholar]
- Aruniit, A.; Kers, J.; Majak, J.; Krumme, A.; Tall, K. Influence of hollow glass microspheres on the mechanical and physical properties and cost of particle reinforced polymer composites. Proc. Estonian Acad. Sci. 2012, 61, 160–165. [Google Scholar] [CrossRef]
- Liang, J.Z.; Wu, C.B. Gray Relational Analysis between Size Distribution and Impact Strength of Polypropylene/Hollow Glass Bead Composites. J. Reinf. Plast. Compos. 2009, 28, 1945–1955. [Google Scholar] [CrossRef]
- Liang, J.Z.; Jiang, X.H. Sound insulation in polymer/inorganic particle composites. I. Theoretical model. J. Appl. Polym. Sci. 2012, 125, 676–681. [Google Scholar] [CrossRef]
- Liang, J.Z. Prediction of sound transmission losses for polymer/inorganic particle composites. Polym. Compos. 2015, 36, 2059–2065. [Google Scholar] [CrossRef]
- Taşdemir, M.; Ersoy, S.; Uluğ, E. Effects of HIPS on the Sound Absorption and Impedance Ratio of SEBS/HIPS/CaCO3 Polymer Composites. Polym. Plast. Technol. Eng. 2012, 51, 954–958. [Google Scholar] [CrossRef]
- Shi, X.; Wu, J.; Wang, X.; Zhou, X.; Xie, X.; Xue, Z. Novel sound insulation materials based on epoxy/hollow silica nanotubes composites. Compos. Part B Eng. 2017, 131, 125–133. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Z.; Dong, T.; Li, H.; Lu, C. Mechanochemical devulcanization of ground tire rubber and its application in acoustic absorbent polyurethane foamed composites. J. Appl. Polym. Sci. 2013, 127, 4006–4014. [Google Scholar] [CrossRef]
- Zhang, C.H.; Hu, Z.; Gao, G.; Zhao, S.; Huang, Y.D. Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites. Mater. Des. 2013, 46, 503–510. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, M.; Chen, M.H.; Wang, L.S.; Bu, Z.X.; Song, G.; Sun, L. Modeling of dynamic mechanical properties of polymer composites reinforced by one dimensional nanofillers. J. Appl. Phys. 2016, 120, 175103. [Google Scholar] [CrossRef]
- Zeqiri, B.; Scholl, W.; Robinson, S.P. Measurement and testing of the acoustic properties of materials: A review. Metrologia 2010, 47, S156–S171. [Google Scholar] [CrossRef]
- Shunmugasamy, V.C.; Anantharaman, H.; Pinisetty, D.; Gupta, N. Unnotched Izod impact characterization of glass hollow particle/vinyl ester syntactic foams. J. Compos. Mater. 2013, 49, 185–197. [Google Scholar] [CrossRef]
- Li, C.; Deng, H.; Wang, K.; Zhang, Q.; Chen, F.; Fu, Q. Strengthening and toughening of thermoplastic polyolefin elastomer using polypropylene-grafted multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2011, 121, 2104–2112. [Google Scholar] [CrossRef]
Sample | Description |
---|---|
TPR | Melt blended PP/EPDM TPR (PP/EPDM = 30/70) |
TPR/10%CaCO3 | TPR composite with 10 phr CaCO3 |
TPR/20%CaCO3 | TPR composite with 20 phr CaCO3 |
TPR/30%CaCO3 | TPR composite with 30 phr CaCO3 |
TPR/40%CaCO3 | TPR composite with 40 phr CaCO3 |
TPR/10%HGM | TPR composite with 10 phr HGM |
TPR/20%HGM | TPR composite with 20 phr HGM |
TPR/30%HGM | TPR composite with 30 phr HGM |
Sample | Density (103 kg/m3) | Surface Density (kg/m2) | Elastic Modulus (MPa) | Poisson Ratio | Stiffness (10−2 Nm) | Sound Speed (m/s) | Acoustic Impedance (103 Pas/m) |
---|---|---|---|---|---|---|---|
TPR | 0.87 | 4.36 | 50.73 | 0.30 | 54.30 | 279.47 | 243.42 |
TPR/10%CaCO3 | 0.90 | 4.50 | 86.12 | 0.31 | 92.54 | 365.71 | 329.14 |
TPR/20%CaCO3 | 0.96 | 4.82 | 104.14 | 0.35 | 113.31 | 415.88 | 400.50 |
TPR/30%CaCO3 | 1.06 | 5.30 | 96.90 | 0.40 | 107.71 | 438.99 | 464.89 |
TPR/40%CaCO3 | 1.15 | 5.73 | 108.40 | 0.31 | 116.38 | 362.24 | 414.77 |
TPR/10%HGM | 0.89 | 4.42 | 97.97 | 0.30 | 104.94 | 387.50 | 342.28 |
TPR/20%HGM | 0.90 | 4.50 | 83.83 | 0.32 | 90.37 | 367.22 | 330.32 |
TPR/30%HGM | 0.94 | 4.72 | 85.64 | 0.31 | 91.81 | 352.00 | 332.22 |
Sample | Tensile Strength (MPa) | Elongation at Break (%) | Impact Strength (KJ/m2) |
---|---|---|---|
TPR | 2.87 ± 0.44 | 211.70 ± 2.32 | 4.23 ± 0.18 |
TPR/10%CaCO3 | 2.99 ± 0.35 | 172.75 ± 3.36 | 7.765 ± 0.18 |
TPR/20%CaCO3 | 3.67 ± 0.18 | 154.02 ± 2.25 | 10.74 ± 0.59 |
TPR/30%CaCO3 | 4.46 ± 0.09 | 114.23 ± 3.49 | 11.27 ± 1.07 |
TPR/40%CaCO3 | 4.70 ± 0.30 | 59.00 ± 3.55 | 11.57 ± 1.13 |
TPR/10%HGM | 3.32 ± 0.23 | 183.51 ± 3.42 | 6.05 ± 0.30 |
TPR/20%HGM | 3.24 ± 0.19 | 158.85 ± 3.69 | 6.61 ± 0.54 |
TPR/30%HGM | 2.98 ± 0.30 | 71.47 ± 4.01 | 6.17 ± 0.27 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, Y.; Fang, W.; Zhong, M.; Jin, J.; Fan, P.; Yang, J.; Fei, Z.; Chen, F.; Kuang, T. Morphological Structure, Rheological Behavior, Mechanical Properties and Sound Insulation Performance of Thermoplastic Rubber Composites Reinforced by Different Inorganic Fillers. Polymers 2018, 10, 276. https://doi.org/10.3390/polym10030276
Fei Y, Fang W, Zhong M, Jin J, Fan P, Yang J, Fei Z, Chen F, Kuang T. Morphological Structure, Rheological Behavior, Mechanical Properties and Sound Insulation Performance of Thermoplastic Rubber Composites Reinforced by Different Inorganic Fillers. Polymers. 2018; 10(3):276. https://doi.org/10.3390/polym10030276
Chicago/Turabian StyleFei, Yanpei, Wei Fang, Mingqiang Zhong, Jiangming Jin, Pin Fan, Jingtao Yang, Zhengdong Fei, Feng Chen, and Tairong Kuang. 2018. "Morphological Structure, Rheological Behavior, Mechanical Properties and Sound Insulation Performance of Thermoplastic Rubber Composites Reinforced by Different Inorganic Fillers" Polymers 10, no. 3: 276. https://doi.org/10.3390/polym10030276
APA StyleFei, Y., Fang, W., Zhong, M., Jin, J., Fan, P., Yang, J., Fei, Z., Chen, F., & Kuang, T. (2018). Morphological Structure, Rheological Behavior, Mechanical Properties and Sound Insulation Performance of Thermoplastic Rubber Composites Reinforced by Different Inorganic Fillers. Polymers, 10(3), 276. https://doi.org/10.3390/polym10030276