Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior
Abstract
:1. Introduction
2. Materials and Characterization
2.1. Materials
2.2. Characterization
2.3. Synthesis of Monoselenomaleimide (MSM)
2.4. General Procedures for Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization of Styrene and MSM
2.5. Oxidation of Copolymer Using H2O2 as Oxidizing Agent
3. Results and Discussion
3.1. Copolymerization of St and MSM
3.2. Oxidization of Copolymer
3.3. Thermal Properties of Selenium-Containing Copolymer and Oxidized Copolymer
3.4. Photoluminescence Investigation
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. J. Am. Chem. Soc. 2010, 132, 442–443. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cao, W.; Zhang, X. Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Acc. Chem. Res. 2013, 46, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Sarma, B.K.; Mugesh, G. Glutathione Peroxidase (GPx)-like Antioxidant Activity of the Organoselenium Drug Ebselen: Unexpected Complications with Thiol Exchange Reactions. J. Am. Chem. Soc. 2005, 127, 11477–11485. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, V.; Alberto, E.E.; Tondo, D.W.; Dambrowski, D.; Detty, M.R.; Nome, F.; Braga, A.L. GPx-Like Activity of Selenides and Selenoxides: Experimental Evidence for the Involvement of Hydroxy Perhydroxy Selenane as the Active Species. J. Am. Chem. Soc. 2012, 134, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, K.; Shah, P.; Singh, H.B.; Butcher, R.J. Synthesis, Structure, and Glutathione Peroxidase-Like Activity of Amino Acid Containing Ebselen Analogues and Diaryl Diselenides. Chem. Eur. J. 2011, 17, 12741–12755. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Wu, Y.; Ma, N.; Xu, H.; Zhang, X. Side-chain selenium-containing amphiphilic block copolymers: Redox-controlled self-assembly and disassembly. Soft Matter 2012, 8, 1460–1466. [Google Scholar] [CrossRef]
- Manjare, S.T.; Kim, Y.; Churchill, D.G. Selenium- and Tellurium-Containing Fluorescent Molecular Probes for the Detection of Biologically Important Analytes. Acc. Chem. Res. 2014, 47, 2985–2998. [Google Scholar] [CrossRef] [PubMed]
- Manjare, S.T.; Kim, S.; Heo, W.D.; Churchill, D.G. Selective and Sensitive Superoxide Detection with a New Diselenide-Based Molecular Probe in Living Breast Cancer Cells. Org. Lett. 2014, 16, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; An, X.; Zhu, J.; Zhou, N.; Zhang, Z.; Pan, X.; Zhu, X. From seleno-mediated radical polymerization to seleno-containing branched polymers and dynamic hydrogel. RSC Adv. 2017, 7, 9773–9779. [Google Scholar] [CrossRef]
- Kwon, T.S.; Kumazawa, S.; Yokoi, T.; Kondo, S.; Kunisada, H.; Yuki, Y. Living Radical Polymerization of Styrene with Diphenyl Diselenide as a Photoiniferter. Synthesis of Polystyrene with Carbon-Carbon Double Bonds at Both Chain Ends. J. Macromol. Sci. Part A Pure Appl. Chem. 1997, 34, 1553–1567. [Google Scholar] [CrossRef]
- Tang, E.; Zhao, Y.; Li, W.; Wang, W.; Zhang, M.; Dai, X. Catalytic Selenium-Promoted Intermolecular Friedel–Crafts Alkylation with Simple Alkenes. Org. Lett. 2016, 18, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.P.; Wilson, P.; Mabire, A.B.; Kiviaho, J.K.; Raymond, J.E.; Haddleton, D.M.; O’Reilly, R.K. Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using Dithiomaleimides. J. Am. Chem. Soc. 2013, 135, 2875–2878. [Google Scholar] [CrossRef] [PubMed]
- Mabire, A.B.; Robin, M.P.; Quan, W.-D.; Willcock, H.; Stavros, V.G.; O’Reilly, R.K. Aminomaleimide fluorophores: A simple functional group with bright, solvent dependent emission. Chem. Commun. 2015, 51, 9733–9736. [Google Scholar] [CrossRef] [PubMed]
- Dana, S.; Mandal, A.; Sahoo, H.; Baidya, M. Ru(II)-Catalyzed C–H Functionalization on Maleimides with Electrophiles: A Demonstration of Umpolung Strategy. Org. Lett. 2017, 19, 1902–1905. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wilson, P.; Kempe, K.; Chen, H.; Haddleton, D.M. Reversible Regulation of Thermoresponsive Property of Dithiomaleimide-Containing Copolymers via Sequential Thiol Exchange Reactions. ACS Macro Lett. 2016, 5, 709–713. [Google Scholar] [CrossRef]
- Pucci, A.; Rausa, R.; Ciardelli, F. Aggregation-Induced Luminescence of Polyisobutene Succinic Anhydrides and Imides. Macromol. Chem. Phys. 2008, 209, 900–906. [Google Scholar] [CrossRef]
- Chen, Y.; Spiering, A.J.H.; Karthikeyan, S.; Peters, G.W.M.; Meijer, E.W.; Sijbesma, R.P. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 2012, 4, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.; Lam, J.W.Y.; Tang, B.Z. Luminogenic polymers with aggregation-induced emission characteristics. Prog. Polym. Sci. 2012, 37, 182–209. [Google Scholar] [CrossRef]
- Mohamed, G.M.; Jheng, Y.-R.; Yeh, S.-L.; Chen, T.; Kuo, S.-W. Unusual Emission of Polystyrene-Based Alternating Copolymers Incorporating Aminobutyl Maleimide Fluorophore-Containing Polyhedral Oligomeric Silsesquioxane Nanoparticles. Polymers 2017, 9, 103. [Google Scholar] [CrossRef]
- Zeng, J.; Zhu, J.; Zhang, Z.; Pan, X.; Zhang, W.; Cheng, Z.; Zhu, X. New selenium-based iniferter agent for living free radical polymerization of styrene under UV irradiation. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 2211–2218. [Google Scholar] [CrossRef]
- Zeng, J.; Zhu, J.; Pan, X.; Zhang, Z.; Zhou, N.; Cheng, Z.; Zhang, W.; Zhu, X. Organoselenium compounds: Development of a universal “living” free radical polymerization mediator. Polym. Chem. 2013, 4, 3453–3457. [Google Scholar] [CrossRef]
- Okamoto, Y.; Chellappa, K.L.; Homsany, R. Reactions of alkyl phenyl selenide with benzoyl peroxide. J. Org. Chem. 1973, 38, 3172–3175. [Google Scholar] [CrossRef]
- Lyons, J.E.; Schiesser, C.H.; Sutej, K. Free-radical homolytic substitution at selenium: An efficient method for the preparation of selenophenes. J. Org. Chem. 1993, 58, 5632–5638. [Google Scholar] [CrossRef]
- Ando, T.; Kwon, T.S.; Kitagawa, A.; Tanemura, T.; Kondo, S.; Kunisada, H.; Yuki, Y. Synthesis and free radical polymerization of p-methylseleno- and p-phenylselenostyrenes. Macromol. Chem. Phys. 1996, 197, 2803–2810. [Google Scholar] [CrossRef]
- Lu, W.; Pan, X.; Zhang, Z.; Zhu, J.; Zhou, N.; Zhu, X. A degradable cross-linked polymer containing dynamic covalent selenide bond. Polym. Chem. 2017, 8, 3874–3880. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, H.; Fu, H. Visible-Light Photoredox Synthesis of Chiral α-Selenoamino Acids. Org. Lett. 2016, 18, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- Harihara Subramanian, S.; Prakash Babu, R.; Dhamodharan, R. Ambient Temperature Polymerization of Styrene by Single Electron Transfer Initiation, Followed by Reversible Addition Fragmentation Chain Transfer Control. Macromolecules 2008, 41, 262–265. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Xia, H.; Zhu, J.; Zhang, W.; Zhu, X. Single-Electron Transfer Living Radical Polymerization (SET-LRP) of Methyl Methacrylate (MMA) with a Typical RAFT Agent as an Initiator. Macromolecules 2009, 42, 7360–7366. [Google Scholar] [CrossRef]
- Nathani, R.I.; Chudasama, V.; Ryan, C.P.; Moody, P.R.; Morgan, R.E.; Fitzmaurice, R.J.; Smith, M.E.B.; Baker, J.R.; Caddick, S. Reversible protein affinity-labelling using bromomaleimide-based reagents. Org. Biomol. Chem. 2013, 11, 2408–2411. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Fan, C.; Jiang, G.; Zhang, J.; Li, X.; Li, N.; Pan, X.; Zhang, Z.; Zhang, W.; Zhu, J.; Zhu, X. Diselenide mediated controlled radical polymerization under visible light irradiation: Mechanism investigation and [small alpha],[small omega]-ditelechelic polymers. Polym. Chem. 2015, 6, 6416–6423. [Google Scholar] [CrossRef]
- Ladavière, C.; Lacroix-Desmazes, P.; Delolme, F. First Systematic MALDI/ESI Mass Spectrometry Comparison to Characterize Polystyrene Synthesized by Different Controlled Radical Polymerizations. Macromolecules 2009, 42, 70–84. [Google Scholar] [CrossRef]
- Liotta, D. New organoselenium methodology. Acc. Chem. Res. 1984, 17, 28–34. [Google Scholar] [CrossRef]
- Vasil’ev, A.; Engman, L. Novel Preparation of α,β-Unsaturated Aldehydes. Benzeneselenolate Promotes Elimination of HBr from α-Bromoacetals. J. Org. Chem. 2000, 65, 2151–2162. [Google Scholar] [CrossRef] [PubMed]
- Gautier, A.; Garipova, G.; Deléens, R.; Piettre, S.R. Carbenoid-mediated elimination of sulfides and selenides. A mild and efficient method for introducing α,β-double bonds to electron-withdrawing substituents. Tetrahedron Lett. 2002, 43, 4959–4962. [Google Scholar] [CrossRef]
- Leung, L.M.; Tan, K.H. Synthesis and electrical properties of polyacetylene copolymers from poly(phenyl vinyl sulfoxide) and its oxidized products. Macromolecules 1993, 26, 4426–4436. [Google Scholar] [CrossRef]
- Lu, H.; Feng, L.; Li, S.; Zhang, J.; Lu, H.; Feng, S. Unexpected Strong Blue Photoluminescence Produced from the Aggregation of Unconventional Chromophores in Novel Siloxane–Poly(amidoamine) Dendrimers. Macromolecules 2015, 48, 476–482. [Google Scholar] [CrossRef]
- Detty, M.R.; Prasad, P.N.; Donnelly, D.J.; Ohulchanskyy, T.; Gibson, S.L.; Hilf, R. Synthesis, properties, and photodynamic properties in vitro of heavy-chalcogen analogues of tetramethylrosamine. Bioorg. Med. Chem. 2004, 12, 2537–2544. [Google Scholar] [CrossRef] [PubMed]
- Piao, W.; Hanaoka, K.; Fujisawa, T.; Takeuchi, S.; Komatsu, T.; Ueno, T.; Terai, T.; Tahara, T.; Nagano, T.; Urano, Y. Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy. J. Am. Chem. Soc. 2017, 139, 13713–13719. [Google Scholar] [CrossRef] [PubMed]
Entry | [St]0/[MSM]0/[CPDN]0/[AIBN]0 | Time (h) | Conv.St b (%) | Conv.MSM b (%) | Mn c (g/mol) | Đ c |
---|---|---|---|---|---|---|
1 | 200/6/2/1 | 2.0 | 20 | 100 | 2000 | 1.28 |
2 | 200/20/2/1 | 2.5 | 51 | 100 | 2600 | 1.35 |
3 | 200/60/2/1 | 10 | 27 | 25 | 2500 | 1.43 |
4 | 200/200/2/1 | 9.0 | 34 | 27 | 3100 | 1.62 |
5 | 0/200/2/1 | 24.0 | N.A. | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Lv, X.; Li, N.; Pan, X.; Zhu, J.; Zhu, X. Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior. Polymers 2018, 10, 321. https://doi.org/10.3390/polym10030321
Liu Q, Lv X, Li N, Pan X, Zhu J, Zhu X. Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior. Polymers. 2018; 10(3):321. https://doi.org/10.3390/polym10030321
Chicago/Turabian StyleLiu, Qian, Xinghua Lv, Na Li, Xiangqiang Pan, Jian Zhu, and Xiulin Zhu. 2018. "Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior" Polymers 10, no. 3: 321. https://doi.org/10.3390/polym10030321
APA StyleLiu, Q., Lv, X., Li, N., Pan, X., Zhu, J., & Zhu, X. (2018). Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior. Polymers, 10(3), 321. https://doi.org/10.3390/polym10030321