Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammalian Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PBI-PMA
2.3. Material Characterizations
2.4. Cell Cytotoxicity Test
2.5. Cell Labeling and Confocal Imaging
3. Results and Discussions
3.1. Synthesis of PBI-PMA
3.2. UV Absorbance and Fluorescence Properties of PBI–PMA
3.3. Ph–Dependent Fluorescence of PBI–PMA
3.4. Cytotoxicity and Cell Labeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kaloyanova, S.; Zagranyarski, Y.; Ritz, S.; Hanulová, M.; Koynov, K.; Vonderheit, A.; Müllen, K.; Peneva, K. Water-Soluble NIR-Absorbing Rylene Chromophores for Selective Staining of Cellular Organelles. J. Am. Chem. Soc. 2016, 138, 2881–2884. [Google Scholar] [CrossRef] [PubMed]
- Huth, K.; Heek, T.; Achazi, K.; Kühne, C.; Urner, L.H.; Pagel, K.; Dernedde, J.; Haag, R. Noncharged and Charged Monodendronised Perylene Bisimides as Highly Fluorescent Labels and their Bioconjugates. Chem. Eur. J. 2017, 23, 4849–4862. [Google Scholar] [CrossRef] [PubMed]
- Muthuraj, B.; Mukherjee, S.; Chowdhury, S.R.; Patra, C.R.; Iyer, P.K. An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro. Biosens. Bioelectron. 2017, 89, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Görl, D.; Zhang, X.; Würthner, F. Molecular assemblies of perylene bisimide dyes in water. Angew. Chem. Int. Ed. 2012, 51, 6328–6348. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wu, W.; Zhu, M.Q.; Han, J.J.; Hurst, J.K.; Li, A.D.Q. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 2007, 129, 3524–3526. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Liu, H.; Liu, Y.; Duan, W.; Yi, X.; Wu, Y.; Zhao, H.; Bai, L. A novel water-soluble fluorescent polymer based on perylene bisimides dyes: One-pot preparation and its bio-imaging. J. Biomater. Sci. Polym. Ed. 2016, 27, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, P.; Wang, Y.; Bai, H.; Wang, S.; Xu, J.F.; Zhang, X. Supramolecular Radical Anions Triggered by Bacteria In Situ for Selective Photothermal Therapy. Angew. Chem. Int. Ed. 2017, 56, 16239–16242. [Google Scholar] [CrossRef] [PubMed]
- Kohl, C.; Weil, T.; Qu, J.; Müllen, K. Towards highly fluorescent and water-soluble perylene dyes. Chem. Eur. J. 2004, 10, 5297–5310. [Google Scholar] [CrossRef] [PubMed]
- Heek, T.; Fasting, C.; Rest, C.; Zhang, X.; Würthner, F.; Haag, R. Highly fluorescent water-soluble polyglycerol-dendronized perylene bisimide dyes. Chem. Commun. 2010, 46, 1884–1886. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, L.; Neoh, K.G.; Kang, E.-T. Water-soluble highly fluorescent poly[poly(ethylene glycol) methyl ether methacrylate] for cell labeling. J. Mater. Chem. 2011, 21, 6502–6505. [Google Scholar] [CrossRef]
- Wang, L.; Sun, C.; Li, S.; Jia, N.; Li, J.; Qu, F.; Goh, K.; Chen, Y. Perylene bisimide-incorporated water-soluble polyurethanes for living cell fluorescence labeling. Polymer 2016, 82, 172–180. [Google Scholar] [CrossRef]
- Chi, Z.; Liu, G.L.; Liu, C.G.; Chi, Z.M. Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl. Microbiol. Biotechnol. 2016, 100, 3841–3851. [Google Scholar] [CrossRef] [PubMed]
- Osanai, S.; Nakamura, K. Effects of complexation between liposome and poly(malic acid) on aggregation and leakage behaviour. Biomaterials 2000, 21, 867–876. [Google Scholar] [CrossRef]
- He, B.; Zeng, J.; Nie, Y.; Ji, L.; Wang, R.; Li, Y.; Wu, Y.; Li, L.; Wang, G.; Luo, X.; et al. In situ gelation of supramolecular hydrogel for anti-tumor drug delivery. Macromol. Biosci. 2009, 9, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Xu, W.; Zhang, W.; Jin, X. Preparation and characterization of biomorphic poly(l-lactide-co-β-malic acid) scaffolds. Mater. Lett. 2014, 124, 313–317. [Google Scholar] [CrossRef]
- Venkatraj, N.; Nanjan, M.J.; Loyer, P.; Chandrasekar, M.J.N.; Cammas Marion, S. Poly(malic acid) bearing Doxorubicin and N-Acetyl Galactosamine as a site-specific prodrug for targeting hepatocellular carcinoma. J. Biomater. Sci. Polym. Ed. 2017, 28, 1140–1157. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Li, R.; He, A.; Xu, J.; Liu, X.; Li, X.; Xu, J. Production of poly(β-l-malic acid) by Aureobasidium pullulans HA-4D under solid-state fermentation. Bioresour. Technol. 2017, 244, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Belibel, R.; Barbaud, C. Synthesis and characterizations of hemiditactic homopolymers derived of poly(3-allyl-3-methylmalic acid): An example of a new class of polymer’s ditacticity. J. Polym. Sci. A 2017, 55, 2408–2418. [Google Scholar] [CrossRef]
- Anil Kumar, P.K.; Shamala, T.R.; Kshama, L.; Prakash, M.H.; Joshi, G.J.; Chandrashekar, A.; Latha Kumari, K.S.; Divyashree, M.S. Bacterial synthesis of poly(hydroxybutyrate-co-hydroxyvalerate) using carbohydrate-rich mahua (Madhuca sp.) flowers. J. Appl. Microbiol. 2007, 103, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Telegdi, J.; Trif, L.; Mihály, J.; Nagy, E.; Nyikos, L. Controlled synthesis and characterization of biodegradable, stereomer co-polycondensates of l-malic acid. J. Therm. Anal. Calorim. 2015, 121, 663–673. [Google Scholar] [CrossRef]
- Ustinov, A.V.; Dubnyakova, V.V.; Korshun, V.A. A convenient “click chemistry” approach to perylene diimide-oligonucleotide conjugates. Tetrahedron 2008, 64, 1467–1473. [Google Scholar] [CrossRef]
- Hyon, S.H.; Jamshidi, K.; Ikada, Y. Synthesis of polylactides with different molecular weights. Biomaterials 1997, 18, 1503–1508. [Google Scholar] [CrossRef]
- Kajiyama, T.; Kobayashi, H.; Taguchi, T.; Kataoka, K.; Tanaka, J. Improved synthesis with high yield and increased molecular weight of poly(α,β-malic acid) by direct polycondensation. Biomacromolecules 2004, 5, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Müllen, K.; Yin, M. Water-soluble perylenediimides: Design concepts and biological applications. Chem. Soc. Rev. 2016, 45, 1513–1528. [Google Scholar] [CrossRef] [PubMed]
- Samudrala, R.; Zhang, X.; Wadkins, R.M.; Mattern, D.L. Synthesis of a non-cationic, water-soluble perylenetetracarboxylic diimide and its interactions with G-quadruplex-forming DNA. Bioorgan. Med. Chem. 2007, 15, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.Q.; Wang, L.; Zhang, B.; Lim, C.H.; Chen, Y.; Neoh, K.G.; Kang, E.T.; Fu, G.D. Functionalization of reduced graphene oxide nanosheets via stacking interactions with the fluorescent and water-soluble perylene bisimide-containing polymers. Polymer 2011, 52, 2376–2383. [Google Scholar] [CrossRef]
- Felber, A.E.; Dufresne, M.H.; Leroux, J.C. PH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev. 2012, 64, 979–992. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Mu, B.; Liu, P. Stimuli-responsive multilayer chitosan hollow microspheres via layer-by-layer assembly. Colloids Surf. B 2011, 83, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, X.; Zhao, Y.; Wang, L.; Liu, B.; Jia, J.; Liang, H.; Chen, M. Enhanced pH stability, cell viability and reduced degradation rate of poly(l-lactide)-based composite in vitro: Effect of modified magnesium oxide nanoparticles. J. Biomater. Sci. Polym. Ed. 2017, 28, 486–503. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Zhao, Y.; Li, C.; Wang, M.; Xu, X.; Jin, Y. Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells. Sci. Rep. 2017, 7, 1759. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; He, M.; Yin, L.; Bao, J.; Shi, L.; Wang, B.; Tang, C.; Yin, C. Biodegradable nanoparticles based on linoleic acid and poly(β-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs. Biomacromolecules 2009, 10, 565–572. [Google Scholar] [CrossRef] [PubMed]
Sample | PBI–OH Feeding Ratio (wt %) | Time (h) | Temp. (°C) | Mw (kDa) | PDI (Mw/Mn) | Yield (%) | |
---|---|---|---|---|---|---|---|
Group | Code | ||||||
1 | 1-A | 0 | 48 | 120 | 3.2 | 1.7 | 92 |
1-B | 1 | 48 | 120 | 4.8 | 2.1 | 93 | |
1-C | 2 | 48 | 120 | 5.1 | 2.0 | 92 | |
1-D 1 | 3 | 48 | 120 | 5.8 | 2.2 | 90 | |
1-E | 4 | 48 | 120 | 5.8 | 1.9 | 90 | |
2 | 2-A | 3 | 12 | 120 | 1.2 | 1.3 | 75 |
2-B | 3 | 24 | 120 | 3.1 | 1.8 | 86 | |
2-C | 3 | 36 | 120 | 4.9 | 2.0 | 89 | |
1-D 1 | 3 | 48 | 120 | 5.8 | 2.2 | 90 | |
2-D | 3 | 60 | 120 | 5.5 | 2.2 | 94 | |
3 | 3-A | 3 | 48 | 110 | 5.3 | 2.1 | 89 |
1-D 1 | 3 | 48 | 120 | 5.8 | 2.2 | 90 | |
3-B | 3 | 48 | 130 | 5.2 | 2.1 | 95 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Chen, H.; Guo, Y.; Wang, L.; Zhu, L.; Karahan, H.E.; Chen, Y. Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammalian Cells. Polymers 2018, 10, 559. https://doi.org/10.3390/polym10050559
He J, Chen H, Guo Y, Wang L, Zhu L, Karahan HE, Chen Y. Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammalian Cells. Polymers. 2018; 10(5):559. https://doi.org/10.3390/polym10050559
Chicago/Turabian StyleHe, Ji, Huixin Chen, Yanjia Guo, Liang Wang, Lingli Zhu, H. Enis Karahan, and Yuan Chen. 2018. "Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammalian Cells" Polymers 10, no. 5: 559. https://doi.org/10.3390/polym10050559
APA StyleHe, J., Chen, H., Guo, Y., Wang, L., Zhu, L., Karahan, H. E., & Chen, Y. (2018). Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammalian Cells. Polymers, 10(5), 559. https://doi.org/10.3390/polym10050559