Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model
Abstract
:1. Introduction
2. Evaluation of the Swelling Properties of Aged Rubber
2.1. Swelling-Test Equipment and Method
2.2. Swelling-Test Results
3. Evaluation of SED Functions of Aged Rubber
3.1. Relationship between CLD and SED
3.2. SED-Function Master Curve
4. Verification of Master Curves
5. Conclusions
- A swelling test for accelerated-aged and room temperature-aged specimens was performed to obtain the crosslink density of the NR/BR blends. The results confirmed that the rubber properties affected the mechanical properties, based on the chemical change due to aging.
- As the aging progressed, the strain-energy density and the crosslink density increased. Therefore, we assumed that the increase of the cross-linked structure was a parallel connection model to the spring, and a linear relationship was found between the strain-energy density and the crosslink density.
- We proposed a method for predicting the aging characteristics of NR/BR blends using a swelling test, by summarizing the relation between the strain-energy density function and the crosslink density. By using this method, we derived an aged master curve that could obtain the behavior of the SED function according to the aging and the strain condition, and a crosslink-density master curve that could predict the behavior of the SED function by the swelling test.
- When the experimental values and the predicted values were compared, it was confirmed that the strain-energy density value predicted using the aging master curve had a mean error of 2.3% or less, which was highly effective.
- The tensile properties of rubber and the behavior of the strain-energy density function could be predicted by the aging. Therefore, it is possible to design in advance for the safety of mechanical equipment, tires, etc. In addition, the sustainability can be evaluated by predicting the SED by measuring the crosslink density of NR/BR blends.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Development of Integrated Design System for Mechanical Rubber Components; M1-9911-00-0014; Institute of Machinery and Materials: Daejeon, Korea, 2004.
- Choi, J.H.; Kang, J.H.; Jeong, H.Y.; Lee, T.S. Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations. J. Mech. Sci. Technol. 2005, 19, 1229–1242. [Google Scholar] [CrossRef]
- Frederick, E.N.; Martyn, B.; Jane, C. Degradation and Life Prediction of a Natural Rubber Engine Mount Compound. Appl. Polym. 2008, 110, 348–355. [Google Scholar]
- Moon, B.W.; Kim, Y.S.; Jun, N.G.; Koo, J.M.; Seok, C.S.; Hong, U.S.; Oh, M.K.; Kim, S.R. A study on the Fatigue Characteristics and Life Prediction of the Tire Sidewall Rubber. Trans. Korean Soc. Mech. Eng. A 2017, 41, 629–634. [Google Scholar]
- Morrell, P.R.; Patel, M.; Skinner, A.R. Accelerated thermal ageing studies on nitrile rubber O-rings. Polym. Test. 2003, 22, 651–656. [Google Scholar] [CrossRef]
- Bystritskaya, E.V.; Monakhova, T.V.; Ivanov, V.B. TGA application for optimizing the accelerated aging conditions and predictions of thermal aging of rubber. Polym. Test. 2013, 32, 197–201. [Google Scholar] [CrossRef]
- Deuri, A.S.; Bhowmick, A.K. Aging of EPDM rubber. Appl. Polym. 1987, 34, 2205–2222. [Google Scholar] [CrossRef]
- Kim, W.S.; Woo, C.S.; Cho, S.J.; Kim, W.D. Prediction of Useful Life by Heat Aging of Motor Fan Isolating Rubber. Elastom. Compos. 2002, 37, 107–114. [Google Scholar]
- Han, S.W.; Kwak, S.B.; Choi, N.S. Accelerated Life Prediction of Ethylene-Propylene Diene Monomer Rubber Subjected to Combined Degradation. Trans. Korean Soc. Mech. Eng. A 2014, 38, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, L.W.; Wang, B.; Xu, Z.Q.; Wang, W. Effect of thermal aging on mechanical properties of EPDM rubber. Appl. Mech. Mater. 2015, 727–728, 318–321. [Google Scholar] [CrossRef]
- Gwaily, S.E.; Badawy, M.M.; Hassan, H.H.; Madani, M. Influence of thermal aging on crosslinking density of boron carbide/natural rubber composites. Polym. Test. 2003, 22, 3–7. [Google Scholar] [CrossRef]
- Yahya, Y.S.R.; Azura, A.R.; Ahmad, Z. Effect of Curing Systems on Thermal Degradation Behaviour of Natural Rubber (SMR CV 60). J. Phys. Sci. 2011, 22, 1–14. [Google Scholar]
- McKenna, G.B.; Flynn, K.M.; Chen, Y. Swelling in crosslinked natural rubber: Experimental evidence of the crosslink density dependence of x. Polymer 1990, 31, 1937–1945. [Google Scholar] [CrossRef]
- Swelling Measurements of Crosslinked Polymers; CPGAN, 5; Cambridge Polymer Group: Charlestown, MA, USA, 2008; pp. 1–4.
- Kumnuantipa, C.; Sombatsompopb, N. Dynamic mechanical properties and swelling behaviour of NR/reclaimed rubber blends. Mater. Lett. 2003, 57, 3167–3174. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, S.K.; Kim, K.T.; Paik, H.-J.; Jeon, H.B.; Min, B.S.; Kim, W.H. Determination of Interaction Parameter χ of the 1,2,3-Triazole Crosslinked Polymer. Elastom. Compos. 2013, 48, 148–155. [Google Scholar] [CrossRef] [Green Version]
- El-Sabbagh, S.H.; Yehia, A.A. Detection of Crosslink Density by Different Methods for Natural Rubber Blended with SBR and NBR. Egypt J. Solids 2007, 30, 157–173. [Google Scholar]
- Takeshita, E.V.; Piantola, F.A.; Souza, S.D.; Nunes, R.C.R.; de Souza, A.A.U. Quantification of Styrene–Butadiene Rubber Swelling as a Function of the Toluene Content in Gasoline: A New Method to Detect Adulterations of Fuels. Appl. Polym. 2013, 127, 3053–3062. [Google Scholar] [CrossRef]
- Surya, I.; Siregar, S.F. Cure Characteristics and Crosslink Density of Natural Rubber/Styrene Butadiene Rubber Blends. J. Tek. Kim. USU 2014, 3, 1–5. [Google Scholar]
- Jin, H.H.; Hong, C.K.; Cho, D.L.; Kaang, S.Y. Effects of Temperature and Curing Systems on Compression Set of NR Compounds at Constant Load. Elastom. Compos. 2009, 44, 41–46. [Google Scholar]
- Gent, A.N. Elasticity. In Engineering with Rubber: How to Design Rubber Components; Hanser Publishers: New York, NY, USA, 1992. [Google Scholar]
- Jin, H.H. A Study of the Effects of Temperatures and Curing System on Rubber Physical Properties. Master’s Thesis, Chonnam National University, Gwangju, Korea, 2009. [Google Scholar]
- Wallace, O.P.; Angelo, F.; Dino, F.; Valentino, C. Cross-Link Density of a Dispersed Rubber Measured by 129Xe Chemical Shift. Macromolecules 2007, 40, 5787–5790. [Google Scholar]
- Marzocca, A.J.; Garraza, A.L.R.; Mansilla, M.A. Evaluation of the polymer–solvent interaction parameter x for the system cured polybutadiene rubber and toluene. Polym. Test. 2010, 29, 119–126. [Google Scholar] [CrossRef]
- Joseph, R.; George, K.E.; Francis, D.J.; Tthomas, K.T. Polymer-Solvent Interaction Parameter for NR/SBR and NR/BR Blends. Int. J. Polym. Mater. 1987, 12, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Kraus, G. Swelling of filler-reinforced vulcanizates. Appl. Polym. 1963, 7, 861–871. [Google Scholar] [CrossRef]
- Mangili, I.; Lasagni, M.; Anzano, M.; Collina, E.; Tantangelo, V.; Franzetti, A.; Caracino, P.; Isayev, A.I. Mechanical and rheological properties of natural rubber compounds containing devulcanized ground tire rubber from several methods. Polym. Degrad. Stab. 2015, 121, 369–377. [Google Scholar] [CrossRef]
- Ellis, B.; Welding, G.N. Estimation, from Swelling, of the Structural Contribution of Chemical Reactions to the Vulcanization of Natural Rubber. Part II. Estimation of Equilibrium Degree of Swelling. Rubber Chem. Technol. 1964, 37, 571–575. [Google Scholar] [CrossRef]
- Bell, C.L.M.; Cunneen, J.I. Oxidative Aging of Natural Rubber Vulcanizates: Part Ⅱ. Effect of Vulcanizate Structure. J. Appl. Polym. Sci. 1967, 11, 2201–2214. [Google Scholar] [CrossRef]
- Pimolsiriphol, V.; Saeoui, P.; Sirisinha, C. Relationship among thermal ageing degradation, dynamic properties, cure systems and antioxidants in natural rubber vulcanisates. Polym. Plast. Technol. Eng. 2007, 46, 113–121. [Google Scholar] [CrossRef]
- Choi, S.S.; Kim, J.C.; Lee, S.G.; Joo, Y.L. Influence of the Cure Systems on Long Time Thermal Aging Behaviors of NR Composites. Macromol. Res. 2008, 16, 561–566. [Google Scholar] [CrossRef]
- ASTM D4482. Standard Standard Test Method for Rubber Property—Extension Cycling Fatigue; ASTM: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Valanis, K.C.; Landel, R.F. The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 1967, 38, 2997–3002. [Google Scholar] [CrossRef]
- Peng, S.T.J.; Landel, R.F. Stored-energy function and compressibility of compressible rubberlike materials under large strain. J. Appl. Phys. 1975, 46, 2599–2604. [Google Scholar] [CrossRef]
- Jun, N.G.; Moon, B.W.; Kim, Y.S.; Koo, J.M.; Seok, C.S.; Hong, U.S.; Oh, M.K.; Kim, S.R. Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature. Elastom. Compos. 2017, 52, 1–6. [Google Scholar]
- Woo, C.S.; Park, H.S. Useful lifetime prediction of rubber component. Eng. Fail. Anal. 2011, 18, 1645–1651. [Google Scholar] [CrossRef]
- Milani, G.; Leroy, E.; Milani, F.; Deterre, R. Mechanistic modeling of reversion phenomenon in sulphur cured natural rubber vulcanization kinetics. Polym. Test. 2013, 32, 1052–1063. [Google Scholar] [CrossRef]
- Gillen, K.T.; Bernstein, R.; Derzon, D.K. Evidence of non-Arrhenius behaviour from laboratory aging and 24-year field aging of polychloroprene rubber materials. Polym. Degrad. Stab. 2005, 87, 57–67. [Google Scholar] [CrossRef]
- Chough, S.H.; Chang, D.H. Kinetics of sulfur vulcanization of NR, BR, SBR, and their blends using a rheometer and DSC. Appl. Polym. 1996, 61, 449–454. [Google Scholar] [CrossRef]
Aging Condition | Temperature, °C | Time, Days |
---|---|---|
Case 1 | 23 | - |
Case 2 | 70 | 17 |
Case 3 | 70 | 35 |
Case 4 | 80 | 17 |
Case 5 | 80 | 35 |
Case 6 | 90 | 17 |
Case 7 | 100 | 17 |
NR/BR Blend Ratio, phr * | 100/0 | 80/20 | 60/40 | 50/50 | 40/60 | 20/80 | 0/100 |
---|---|---|---|---|---|---|---|
Interaction coefficient, χ | 0.393 | 0.382 | 0.372 | 0.367 | 0.361 | 0.351 | 0.340 |
Aging Conditions | #1 | #2 | #3 | Average | |
---|---|---|---|---|---|
Crosslink density (10−5 mol/cm3) | Unaged | 4.3 | 4.6 | 4.4 | 4.4 |
70 °C, 17 days | 6.5 | 6.5 | 6.3 | 6.4 | |
70 °C, 35 days | 8.3 | 8.3 | |||
80 °C, 17 days | 8.8 | 8.5 | 8.8 | 8.7 | |
80 °C, 35 days | 12.1 | 12.1 | |||
90 °C, 17 days | 11.2 | 11.1 | 12.5 | 11.6 | |
100 °C, 17 days | 14.7 | 14.4 | 14.3 | 14.5 |
Aging (°C, Days) | Normal | 70, 17 | 80, 17 | 90, 17 | 100, 17 |
---|---|---|---|---|---|
Coefficient number (k) | 0.80 | 1.09 | 1.24 | 1.53 | 1.64 |
Exponential term (n) | 1.65 | 1.69 | 1.71 | 1.71 | 1.70 |
Aging Condition | #1 | #2 | #3 | Average | |
---|---|---|---|---|---|
CLD (10−5 mol/cm3) | Unaged | 4.3 | 4.6 | 4.4 | 4.5 |
RT, 2 years | 6.1 | 6.0 | 5.8 | 6.0 |
Aging Condition | Strain | Predicted SED | Test SED | Error, % |
---|---|---|---|---|
Unaged | 0.69 | 0.43 | 0.44 | 2.7 |
0.93 | 0.69 | 0.70 | 1.3 | |
1.16 | 1.07 | 1.03 | 2.7 | |
1.39 | 1.37 | 1.38 | 0.9 | |
17 °C, 365 days | 0.69 | 0.51 | 0.50 | 1.3 |
0.93 | 0.84 | 0.83 | 1.9 | |
1.16 | 1.22 | 1.22 | 0.7 | |
1.39 | 1.66 | 1.67 | 0.4 | |
17 °C, 730 days | 0.69 | 0.53 | 0.53 | 2.6 |
0.93 | 0.89 | 0.84 | 5.5 | |
1.16 | 1.30 | 1.23 | 5.2 | |
1.39 | 1.76 | 1.72 | 2.3 | |
Standard error | 2.3 |
Aging Condition | Strain | Predicted SED | Test SED | Error, % |
---|---|---|---|---|
Unaged | 0.69 | 0.47 | 0.44 | 6.2 |
0.93 | 0.77 | 0.70 | 9.1 | |
1.16 | 1.13 | 1.03 | 8.4 | |
1.39 | 1.53 | 1.38 | 9.8 | |
17 °C, 730 days | 0.69 | 0.54 | 0.53 | 1.9 |
0.93 | 0.89 | 0.84 | 4.7 | |
1.16 | 1.29 | 1.23 | 4.5 | |
1.39 | 1.75 | 1.72 | 1.5 | |
Standard error | 5.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, B.; Lee, J.; Park, S.; Seok, C.-S. Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model. Polymers 2018, 10, 658. https://doi.org/10.3390/polym10060658
Moon B, Lee J, Park S, Seok C-S. Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model. Polymers. 2018; 10(6):658. https://doi.org/10.3390/polym10060658
Chicago/Turabian StyleMoon, Byungwoo, Jongmin Lee, Soo Park, and Chang-Sung Seok. 2018. "Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model" Polymers 10, no. 6: 658. https://doi.org/10.3390/polym10060658
APA StyleMoon, B., Lee, J., Park, S., & Seok, C. -S. (2018). Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model. Polymers, 10(6), 658. https://doi.org/10.3390/polym10060658