Preparation of Molecularly Imprinted Microspheres as Biomimetic Recognition Material for In Situ Adsorption and Selective Chemiluminescence Determination of Bisphenol A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of BPA-MIMS Specifically Targeted BPA
2.3. Characterization
2.4. Chemiluminescence Measurements
2.5. Binding Measurements
2.6. Analytical Evaluation of the Proposed Method
3. Results
3.1. BPA-MIMS Binding Assays
3.2. Synthesis and Characterization of BPA-MIMS
3.3. CL Instrument Condition Choice and CL Measurement Condition Optimization
3.3.1. Condition Choice of the CL Instrument
3.3.2. Conditions Optimization for CL Measurement
3.3.3. Optimum of BPA Adsorption Time
3.4. The Analytical Performance for BPA Measurements
3.4.1. Discussion of the Possible CL Reaction Mechanism
3.4.2. Analytical Calibration Curve and Limit of Detection (LOD)
3.4.3. Repeatability and Response Time
3.4.4. Interference Study and Recovery Test
3.4.5. Analytical Application of the Proposed Method for BPA Determination
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yin, H.; Napolitano, S.; Schönhals, A. Molecular mobility and glass transition of thin films of poly(bisphenol A carbonate). Macromolecules 2012, 45, 1652–1662. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Widespread occurrence of bisphenol A in paper and paper products: Implications for human exposure. Environ. Sci. Technol. 2011, 45, 9372–9379. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Kannan, K. High levels of bisphenol A in paper currencies from several countries, and implications for dermal exposure. Environ. Sci. Technol. 2011, 45, 6761–6768. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L.; Corriveau, J. Migration of bisphenol A from polycarbonate baby and water bottles into water under severe conditions. J. Agric. Food Chem. 2008, 56, 6378–6381. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.E.; Kendig, E.L.; Belcher, S.M. Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere 2011, 85, 943–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safe, S.H. Endocrine disruptors and human health-is there a problem? An update. Environ. Health. Perspect. 2000, 108, 487–493. [Google Scholar] [PubMed]
- NCSL Policy Update: State Restrictions on Bisphenol A (BPA) in Consumer Products. Available online: http://www.ncsl.org/research/environment-and-natural-resources/policy-update-on-state-restrictions-on-bisphenol-a.aspx (accessed on 5 December 2012).
- Amending Directive 2002/72/EC as Regards the Restriction of Use of Bisphenol a in Plastic Infant Feeding Bottles. Available online: https://eur-lex.europa.eu/eli/dir/2011/8/oj (accessed on 5 December 2012).
- Bisphenol A (BPA): Use in Food Contact Application. Available online: https://www.fda.gov/newsevents/publichealthfocus/ucm064437.htm (accessed on 25 December 2012).
- Yin, H.; Zhou, Y.; Ai, S.; Chen, Q.; Zhu, X.; Liu, X.; Zhu, L. Sensitivity and selectivity determination of bpa in real water samples using pamam dendrimer and cote quantum dots modified glassy carbon electrode. J. Hazard. Mater. 2009, 174, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent advances ingraphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. [Google Scholar] [CrossRef] [PubMed]
- Ben Messaoud, N.; Ghica, M.E.; Dridi, C.; Ben Ali, M.; Brett, C.M.A. Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens. Actuators B Chem. 2017, 253, 513–522. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography-tandem mass spectrometry. Environ. Sci. Technol. 2012, 46, 5003–5009. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-T.; Zhang, Y.-H.; Zhang, M.; Liu, F.; Wan, Y.-C.; Huang, Z.; Ye, L.; Zhou, Q.; Shi, Y.; Lu, B. Selective and simultaneous determination of trace bisphenol A and tebuconazole in vegetable and juice samples by membrane-based molecularly imprinted solid-phase extraction and hplc. Food Chem. 2014, 164, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Zimmers, S.M.; Browne, E.P.; O’Keefe, P.W.; Anderton, D.L.; Kramer, L.; Reckhow, D.A.; Arcaro, K.F. Determination of free Bisphenol A (BPA) concentrations in breast milk of U.S. Women using a sensitive LC/MS/MS method. Chemosphere 2014, 104, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Provencher, G.; Bérubé, R.; Dumas, P.; Bienvenu, J.F.; Gaudreau, É.; Bélanger, P.; Ayotte, P. Determination of Bisphenol A, triclosan and their metabolites in humanurine using isotope-dilution liquid chromatography-tandem massspectrometry. J. Chromatogr. A 2014, 1348, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Kubwabo, C.; Kosarac, I.; Lalonde, K.; Foster, W.G. Quantitative determination of free and total bisphenol A in human urine using labeled BPA glucuronide and isotope dilution mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 4381–4392. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wei, X.; Du, L.; Zhuang, H. Determination of bisphenol A using a flowinjection inhibitory chemiluminescence method. Luminescence 2005, 20, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, K.V.; Rastogi, N.K. Graphene-copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sens. Actuators B Chem. 2016, 229, 570–580. [Google Scholar] [CrossRef]
- Gallo, P.; Di Marco Pisciottano, I.; Esposito, F.; Fasano, E.; Scognamiglio, G.; Mita, G.D.; Cirillo, T. Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and uplc with fluorescence detection. Food Chem. 2016, 220, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chen, Z.; Jiang, X.; Feng, D.-Q.; Zhao, J.; Fan, D.; Wang, W. In-situ hydrothermal synthesis of molecularly imprinted polymerscoated carbon dots for fluorescent detection of bisphenol A. Sens. Actuators B Chem. 2016, 228, 302–307. [Google Scholar] [CrossRef]
- Salgueiro-González, N.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Trends in analytical methodologies for the determination of alkylphenols and bisphenol A in water samples. Anal. Chim. Acta 2017, 962, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Vlatakis, G.; Andersson, L.; Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Water-compatible molecularly imprinted polymers: Promising synthetic substitutes for biological receptors. Polymer 2014, 55, 699–714. [Google Scholar] [CrossRef]
- Pichon, V. Selective sample treatment using molecularly imprinted polymers. J. Chromatogr. A 2007, 1152, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Kempe, H.; Kempe, M. Development and evaluation of spherical molecularly imprinted polymer beads. Anal. Chem. 2006, 78, 3659–3666. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Liu, S.; Gao, M.; Sun, N. Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine. J. Chromatogr. A 2013, 1294, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kan, X.; Zhao, Q.; Zhang, Z.; Wang, Z.; Zhu, J.-J. Molecularly imprinted polymers microsphere prepared by precipitation polymerization for hydroquinone recognition. Talanta 2008, 75, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Jiang, M.; Shi, Y.; Lin, Y.; Peng, Y.; Dai, K.; Lu, B. Narrowly dispersed molecularly imprinted microspheres prepared by a modified precipitation polymerization method. Anal. Chim. Acta 2008, 612, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, K.; LeJeune, J.; Spivak, D.A.; Ye, L. Peptide-imprinted polymer microspheres prepared by precipitation polymerization using a single bi-functional monomer. Analyst 2009, 134, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ye, L. Interfacial molecular imprinting in nanoparticle-stabilized emulsions. Macromolecules 2011, 44, 5631–5637. [Google Scholar] [CrossRef] [PubMed]
- Pickering, S.U. Cxcvi.-emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Dinsmore, A.D.; Hsu, M.F.; Nikolaides, M.G.; Marquez, M.; Bausch, A.R.; Weitz, D.A. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 2002, 298, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.L.; Armes, S.P.; Howse, J.R.; Ebbens, S.; Ahmad, I.; Zaidi, J.H.; York, D.W.; Burdis, J.A. Covalently cross-linked colloidosomes. Macromolecules 2010, 43, 10466–10474. [Google Scholar] [CrossRef]
- Shen, X.; Ye, L. Molecular imprinting in pickering emulsions: A new insight into molecular recognition in water. Chem. Commun. 2011, 47, 10359–10361. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.; Pan, J.; Zhang, Y.; Dai, X.; Yin, Y.; Qu, Q.; Yan, Y. Molecularly imprinted polymers derived from lignin-based pickering emulsions and their selectively adsorption of lambda-cyhalothrin. Chem. Eng. J. 2014, 257, 317–327. [Google Scholar] [CrossRef]
- Shen, X.; Huang, C.; Shinde, S.; Jagadeesan, K.K.; Ekstrom, S.; Fritz, E.; Sellergren, B. Catalytic formation of disulfide bonds in peptides by molecularly imprinted microgels at oil/water interfaces. ACS Appl. Mater. Interfaces 2016, 8, 30484–30491. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Xu, C.; Ye, L. Imprinted polymer beads enabling direct and selective molecular separation in water. Soft Matter 2012, 8, 7169–7176. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wang, J.; Sun, X.; Cao, R.; Sun, H.; Huang, C.; Chen, J. Molecularly imprinted polymer microspheres prepared by pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Anal. Chim. Acta 2015, 872, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, J.; Li, Y.; Jin, J.; Yang, J.; Li, F.; Shah, S.M.; Chen, J. Highly class-selective solid-phase extraction of bisphenols in milk, sediment and human urine samples using well-designed dummy molecularly imprinted polymers. J. Chromatogr. A 2014, 1360, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhou, H.; Zhang, Z.; He, D.; He, C. Molecularly imprinted on-line solid-phase extraction combined with flow-injection chemiluminescence for the determination of tetracycline. Analyst 2006, 131, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Huang, R.; Qi, W.; Su, R.; He, Z. Interfacial polymerization of dopamine in a pickering emulsion: Synthesis of cross-linkable colloidosomes and enzyme immobilization at oil/water interfaces. ACS Appl. Mater. Interfaces 2015, 7, 14954–14964. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Duan, C.F.; Lai, C.Z.; Lian, M.; Zhang, Z.F.; Liu, L.J.; Cui, H. Inhibition and enhancement by organic compounds of luminol-kio4-h2o2 chemiluminescence. Luminescence 2006, 21, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cui, L.; Han, S.; Hao, F. Size-dependent active effect of cadmium telluride quantum dots on luminol-potassium periodate chemiluminescence system for levodopa detection. Appl. Spectrosc. 2015, 69, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Atrahimovich, D.; Vaya, J.; Tavori, H.; Khatib, S. Glabridin protects paraoxonase 1 from linoleic acid hydroperoxide inhibition via specific interaction: A fluorescence-quenching study. J. Agric. Food Chem. 2012, 60, 3679–3685. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q. Basic Organic Chemistry, 3rd ed.; Higher Education Press: Beijing, China, 2007. [Google Scholar]
Interfering substances | Without MIMS | With MIMS |
---|---|---|
SO42− | 100 | 200 |
CO32− | 10 | 200 |
Cl− | 200 | 400 |
PO43− | 10 | 200 |
Na+ | 200 | 400 |
Ca2+ | 10 | 200 |
Mg2+ | 20 | 200 |
NH4+ | 10 | 200 |
Fe3+ | 10 | 10 |
citric acid | 10 | 100 |
4,4′-Dihydroxybiphenyl | 5 | 20 |
4,4′-Cyclohexylidenebisphenol | 6 | 20 |
Bisphenol A bis(chloroformate) | 5 | 20 |
Bisphenol A acetate propionate | 8 | 15 |
2,2-Bis(4-hydroxy-3-methylphenyl)propane | 5 | 10 |
Bis(2-hydroxyphenyl)methane | 5 | 10 |
Bis(4-hydroxyphenyl)methane (BPF) | 2 | 3 |
tyrosine | 8 | 20 |
fulvic acid | 10 | 50 |
urea | 10 | 100 |
Water sample | BPA Added (μg mL−1) | BPA Founded (μg mL−1) | Recovery (%) |
---|---|---|---|
River water | 0 | 0.03 | - |
0.5 | 0.58 | 110 | |
1 | 1.09 | 106 | |
Tap water | 0 | 0 | - |
0.5 | 0.51 | 102 | |
1 | 1.03 | 103 | |
Boiled water | 0 | 0 | - |
0.5 | 0.52 | 104 | |
1 | 0.96 | 96 | |
Drinking water | 0 | 0 | - |
0.5 | 0.49 | 98 | |
1 | 0.98 | 98 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Wang, Q.; Duan, M.; Xu, J.; Chen, J.; Fang, S. Preparation of Molecularly Imprinted Microspheres as Biomimetic Recognition Material for In Situ Adsorption and Selective Chemiluminescence Determination of Bisphenol A. Polymers 2018, 10, 780. https://doi.org/10.3390/polym10070780
Xiong Y, Wang Q, Duan M, Xu J, Chen J, Fang S. Preparation of Molecularly Imprinted Microspheres as Biomimetic Recognition Material for In Situ Adsorption and Selective Chemiluminescence Determination of Bisphenol A. Polymers. 2018; 10(7):780. https://doi.org/10.3390/polym10070780
Chicago/Turabian StyleXiong, Yan, Qing Wang, Ming Duan, Jing Xu, Jie Chen, and Shenwen Fang. 2018. "Preparation of Molecularly Imprinted Microspheres as Biomimetic Recognition Material for In Situ Adsorption and Selective Chemiluminescence Determination of Bisphenol A" Polymers 10, no. 7: 780. https://doi.org/10.3390/polym10070780
APA StyleXiong, Y., Wang, Q., Duan, M., Xu, J., Chen, J., & Fang, S. (2018). Preparation of Molecularly Imprinted Microspheres as Biomimetic Recognition Material for In Situ Adsorption and Selective Chemiluminescence Determination of Bisphenol A. Polymers, 10(7), 780. https://doi.org/10.3390/polym10070780