Morphology and Thermal Properties of Calcium Alginate/Reduced Graphene Oxide Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the CaAlg
2.3. Preparation of the CaAlg/rGO Nanocomposites
2.4. Characterizations
2.4.1. FT-IR
2.4.2. XRD
2.4.3. SEM
2.4.4. TGA
3. Results and Discussion
3.1. FT-IR Analysis
3.2. XRD Analysis
3.3. SEM Analysis
3.4. TGA Analysis
3.4.1. Thermal Degradation Behaviors under N2 Atmosphere
3.4.2. Thermal-Oxidative Degradation Behaviors under Air Atmosphere
3.4.3. Thermal Degradation Mechanisms
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, J.S.; Xie, Y.J.; He, W. Research progress on chemical modification of alginate: A review. Carbohydr. Polym. 2011, 84, 33–39. [Google Scholar] [CrossRef]
- Algothmi, W.M.; Bandaru, N.M.; Yu, Y.; Shapter, J.G.; Ellis, A.V. Alginate-graphene oxide hybrid gel beads: An efficient copper adsorbent material. J. Colloid Interface Sci. 2013, 397, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Wang, M.X.; Haider, H.; Yang, J.H.; Sun, J.Y.; Chen, Y.M.; Zhou, J.; Suo, Z. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 2013, 5, 10418–10422. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Yang, J.; Han, S. The synthesis and characteristics of sodium alginate/graphene oxide composite films crosslinked with multivalent cations. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Crossingham, Y.J.; Kerr, P.G.; Kennedy, R.A. Comparison of selected physico-chemical properties of calcium alginate films prepared by two different methods. Int. J. Pharm. 2014, 473, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Kilan, K.; Warszyński, P. Thickness and permeability of multilayers containing alginate cross-linked by calcium ions. Electrochim. Acta 2014, 144, 254–262. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Zhong, L.; Wu, G. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat. Phys. Chem. 2009, 78, 251–255. [Google Scholar] [CrossRef]
- Barrett, P.R.F. Some studies on the use of alginates for the placement and controlled release of diquat on submerged aquatic plants. Pest Manag. Sci. 2010, 9, 425–433. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Barnes, J.A.; Barker, S.A. The use of alginate ester films on solid supports in the preparation of water-insoluble immunoadsorbents for purification of antigens. Eur. J. Biochem. 1983, 133, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Sikareepaisan, P.; Ruktanonchai, U.; Supaphol, P. Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr. Polym. 2011, 83, 1457–1469. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Zhao, X.; Deng, Y.; Xue, Y.; Li, Q. Flame retardancy and thermal degradation mechanism of calcium alginate/caco3 composites prepared via in situ method. J. Therm. Anal. Calorim. 2017, 131, 2167–2177. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Zhao, X.; Zhang, L.; Li, Q. Highly efficient flame retardant hybrid composites based on calcium alginate/nano-calcium borate. Polymers 2018, 10, 625. [Google Scholar] [CrossRef]
- Los, J.H.; Zakharchenko, K.V.; Katsnelson, M.I.; Fasolino, A. Melting temperature of graphene. Phys. Rev. B 2015, 91, 404–406. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, G.; Su, X.; Zhang, H.; Wan, J.; Chen, X.; Wu, H.; Liu, C. Transparent and flexible capacitors with an ultrathin structure by using graphene as bottom electrodes. Nanomaterials 2017, 7, 418. [Google Scholar] [CrossRef] [PubMed]
- Celik, N.; Manivannan, N.; Strudwick, A.; Balachandran, W. Graphene-enabled electrodes for electrocardiogram monitoring. Nanomaterials 2016, 6, 156. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Gao, J.; Wang, X.; Liang, H.; Ge, C. How can graphene reduce the flammability of polymer nanocomposites? Mater. Lett. 2012, 66, 187–189. [Google Scholar] [CrossRef]
- Han, Y.; Wu, Y.; Shen, M.; Huang, X.; Zhu, J.; Zhang, X. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J. Mater. Sci. Lett. 2013, 48, 4214–4222. [Google Scholar] [CrossRef]
- Ionita, M.; Pandele, M.A.; Iovu, H. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr. Polym. 2013, 94, 339. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci. 2016, 484, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Pandi, K.; Viswanathan, N. A facile synthesis of metal ion-imprinted graphene oxide/alginate hybrid biopolymeric beads for enhanced fluoride sorption. RSC Adv. 2016, 6, 75905–75915. [Google Scholar] [CrossRef]
- Shu, B.; Wu, S.; Dong, L.; Wang, Q.; Liu, Q. Microfluidic synthesis of ca-alginate microcapsules for self-healing of bituminous binder. Materials 2018, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lode, A.; Wu, C.; Jiang, C.; Gelinsky, M. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3d plotting and in situ mineralization for bone tissue engineering. ACS Appl. Mater. Interfaces 2015, 7, 6541–6549. [Google Scholar] [CrossRef] [PubMed]
- Ramesha, G.K.; Kumara, A.V.; Muralidhara, H.B.; Sampath, S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 2011, 361, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ling, Y.; Cao, C.; Li, X.; Chen, X.; Wang, X. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Mater. Sci. Eng. C 2016, 69, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Abdulkhani, A.; Daliri Sousefi, M.; Ashori, A.; Ebrahimi, G. Preparation and characterization of sodium carboxymethyl cellulose/silk fibroin/graphene oxide nanocomposite films. Polym. Test. 2016, 52, 218–224. [Google Scholar] [CrossRef]
- Jiao, C.; Xiong, J.; Tao, J.; Xu, S.; Zhang, D.; Lin, H.; Chen, Y. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study. Int. J. Biol. Macromol. 2016, 83, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Du, Q.; Liu, T.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr. Polym. 2013, 95, 501–507. [Google Scholar] [CrossRef] [PubMed]
Parameters | CaAlg | CaAlg/rGO | D-Value |
---|---|---|---|
Residues at 60 °C | 99.6 | 99.3 | 0.03 |
Residues at 90 °C | 98.3 | 98.0 | 0.03 |
Residues at 120 °C | 96.1 | 96.3 | 0.02 |
Residues at 150 °C | 93.8 | 94.6 | 0.08 |
Residues at 180 °C | 92.0 | 92.9 | 0.09 |
Paremeters | CaAlg | CaAlg/rGO | D-Value | Carbonization Rate |
---|---|---|---|---|
Residues at 250 °C | 74.0 | 76.0 | 2.0 | 0 |
Residues at 350 °C | 52.7 | 56.8 | 4.1 | 2.1% |
Residues at 450 °C | 45.2 | 49.8 | 4.6 | 2.6% |
Residues at 550 °C | 40.2 | 45.3 | 5.1 | 3.1% |
Residues at 650 °C | 38.8 | 44.3 | 5.5 | 3.5% |
Residues at 750 °C | 36.0 | 42.1 | 6.1 | 4.1% |
Residues at 850 °C | 32.2 | 38.3 | 6.1 | 4.1% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Qi, Y.; Wang, Y.; Xue, Y.; Xu, P.; Li, Z.; Li, Q. Morphology and Thermal Properties of Calcium Alginate/Reduced Graphene Oxide Composites. Polymers 2018, 10, 990. https://doi.org/10.3390/polym10090990
Zhao W, Qi Y, Wang Y, Xue Y, Xu P, Li Z, Li Q. Morphology and Thermal Properties of Calcium Alginate/Reduced Graphene Oxide Composites. Polymers. 2018; 10(9):990. https://doi.org/10.3390/polym10090990
Chicago/Turabian StyleZhao, Wanting, Yan Qi, Yue Wang, Yun Xue, Peng Xu, Zichao Li, and Qun Li. 2018. "Morphology and Thermal Properties of Calcium Alginate/Reduced Graphene Oxide Composites" Polymers 10, no. 9: 990. https://doi.org/10.3390/polym10090990
APA StyleZhao, W., Qi, Y., Wang, Y., Xue, Y., Xu, P., Li, Z., & Li, Q. (2018). Morphology and Thermal Properties of Calcium Alginate/Reduced Graphene Oxide Composites. Polymers, 10(9), 990. https://doi.org/10.3390/polym10090990