Self-Assembly and Enzyme Responsiveness of Amphiphilic Linear-Dendritic Block Copolymers Based on Poly(N-vinylpyrrolidone) and Dendritic Phenylalanyl-lysine Dipeptides
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Characterizations
2.3. Synthesis of PNVP-b-dendr(Phe-Lys)n (n = 1–3)
2.3.1. Synthesis of PNVP
2.3.2. Synthesis of PNVP–NHBoc
2.3.3. Synthesis of PNVP–NH2
2.3.4. Synthesis of PNVP-b-Phe-NHFmoc
2.3.5. Synthesis of PNVP-b-Phe-NH2
2.3.6. Synthesis of PNVP-b-dendr(Phe-Lys)
2.3.7. Synthesis of PNVP-b-dendr(Phe-Lys)2
2.3.8. Synthesis of PNVP-b-dendr(Phe-Lys)3
2.4. Critical Micelle Concentration (CMC) Measurement
2.5. Monitoring Trypsin-Induced Disassembly of the Nile Red-Loaded Micelles
2.6. Particle Sizing and Transmission Electron Microscope (TEM) Measurements
2.7. Loading and Enzyme-Triggered Release of Doxorubicin (DOX) into/from the LDBCs Micelles
2.8. In Vitro Cytotoxicity Evaluation
3. Results and Discussion
3.1. Synthesis of Amphiphilic LDBCs
3.2. Self-Assembly of Amphiphilic LDBCs
3.3. Enzyme-Triggered Disassembly of the LDBC Micelles
3.4. In Vitro Drug Release from DOX-Loaded Micelles
3.5. In Vitro Cytotoxicity of the LDBCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hu, J.M.; Zhang, G.Q.; Liu, S.Y. Enzyme-Responsive Polymeric Assemblies, Nanoparticles and Hydrogels. Chem. Soc. Rev. 2012, 41, 5933–5949. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Q.; Wang, Z.; Zhang, X. An Enzyme-Responsive Polymeric Superamphiphile. Angew. Chem. Int. Ed. 2010, 49, 8612–8615. [Google Scholar] [CrossRef] [PubMed]
- Azagarsamy, M.A.; Sokkalingam, P.; Thayumanavan, S. Enzyme-triggered Disassembly of Dendrimer-based Amphiphilic Nanocontainers. J. Am. Chem. Soc. 2009, 131, 14184–14185. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Khan, A. Enzyme Sensitive Synthetic Polymer Micelles Based on the Azobenzene Motif. J. Am. Chem. Soc. 2013, 135, 14056–14059. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Swierczewska, M.; Lee, S.; Chen, X. Protease-Activated Drug Development. Theranostics 2012, 2, 156–178. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.; Mari, B.P.; Wang, F.; Anderson, I.C.; Sunday, M.E.; Shipp, M.A. Stromelysin-3 Suppresses Tumor Cell Apoptosis in a Murine Model. J. Cell. Biochem. 2001, 82, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Kuang, T.; Liu, Y.; Gong, T.; Peng, X.; Hu, X.; Yu, Z. Enzyme-responsive Nanoparticles for Anticancer Drug Delivery. Curr. Nanosci. 2016, 12, 38–46. [Google Scholar] [CrossRef]
- Slor, G.; Papo, N.; Hananel, U.; Amir, R.J. Tuning the Molecular Weight of Polymeric Amphiphiles as A Tool to Access Micelles with A Wide Range of Enzymatic Degradation Rates. Chem. Commun. 2018, 54, 6875–6878. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Azagarsamy, M.A.; Thayumanavan, S. Guest-Release Control in Enzyme-Sensitive, Amphiphilic-Dendrimer-Based Nanoparticles through Photochemical Crosslinking. Chemistry 2011, 17, 11752–11760. [Google Scholar] [CrossRef]
- Chandrawati, R. Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp. Biol. Med. 2016, 241, 972–979. [Google Scholar] [CrossRef]
- Harnoy, A.J.; Rosenbaum, I.; Tirosh, E.; Ebenstein, Y.; Shaharabani, R.; Beck, R.; Amir, R.J. Enzyme-Responsive Amphiphilic PEG-Dendron Hybrids and Their Assembly into Smart Micellar Nanocarriers. J. Am. Chem. Soc. 2014, 136, 7531–7534. [Google Scholar] [CrossRef] [PubMed]
- Harnoy, A.J.; Buzhor, M.; Tirosh, E.; Shaharabani, R.; Beck, R.; Amir, R.J. Modular Synthetic Approach for Adjusting the Disassembly Rates of Enzyme-Responsive Polymeric Micelles. Biomacromolecules 2017, 18, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- va Blasco, M.; Pinol, M.; Oriol, L. Responsive Linear-Dendritic block copolymers. Macromol. Rapid Commun. 2014, 35, 1090–1115. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, W.; Xiao, K.; Berti, L.; Luo, J.; Tseng, H.P.; Fung, G.; Lam, K.S. Well-Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pH Values and cis-Diols. Angew. Chem. Int. Ed. 2012, 51, 2864–2869. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Bousquet, A.; Stenzel, M.H. Thiol-alkyne Chemistry for the Preparation of Micelles with Glycopolymer Corona: Dendritic Surfaces versus Linear Glycopolymer in Their Ability to Bind to Lectins. Macromol. Rapid Commun. 2011, 32, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Whitton, G.; Gillies, E.R. Functional Aqueous Assemblies of Linear-Dendron Hybrids. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 148–172. [Google Scholar] [CrossRef]
- Van Dijk, M.; Nollet, M.L.; Weijers, P.; Dechesne, A.C.; van Nostrum, C.F.; Hennink, W.E.; Rijkers, D.T.S.; Liskamp, R.M.J. Synthesis and Characterization of Biodegradable Peptide-based Polymers Prepared by Microwave-assisted Click Chemistry. Biomacromolecules 2008, 9, 2834–2843. [Google Scholar] [CrossRef]
- Yang, W.J.; Xia, Y.F.; Fang, Y.; Meng, F.H.; Zhang, J.; Cheng, R.; Deng, C.; Zhong, Z.Y. Selective Cell Penetrating Peptide-Functionalized Polymersomes Mediate Efficient and Targeted Delivery of Methotrexate Disodium to Human Lung Cancer In Vivo. Adv. Healthcare Mater. 2017, 7, 1701–1735. [Google Scholar] [CrossRef]
- Fox, M.E.; Guillaudeu, S.; Fréchet, J.M.J.; Jerger, K.; Macaraeg, N.; Szoka, F.C. Synthesis and In Vivo Antitumor Efficacy of PEGylated Poly(L-lysine) Dendrimer-Camptothecin Conjugates. Mol. Pharm. 2009, 6, 1562–1572. [Google Scholar] [CrossRef]
- Luo, J.; Xiao, K.; Li, Y.; Lee, J.S.; Shi, L.; Tan, Y.-H.; Xing, L.; Cheng, R.H.; Liu, G.-Y.; Lam, K.S. Well-Defined, Size-Tunable, Multifunctional Micelles for Efficient Paclitaxel Delivery for Cancer Treatment. Bioconjugate Chem. 2010, 21, 1216–1224. [Google Scholar] [CrossRef] [Green Version]
- Boduch-Lee, K.A.; Chapman, T.; Petricca, S.E.; Marra, K.G.; Kumta, P. Design and Synthesis of Hydroxyapatite Composites Containing an mPEG-Dendritic Poly(L-lysine) Star Polycaprolactone. Macromolecules 2004, 37, 8959–8966. [Google Scholar] [CrossRef]
- Choi, J.S.; Lee, E.J.; Choi, Y.H.; Jeong, Y.J.; Park, J.S. Poly(ethylene glycol)-block-poly(L-lysine) Dendrimer: Novel Linear Polymer/Dendrimer Block Copolymer Forming a Spherical Water-Soluble Polyionic Complex with DNA. Bioconjugate Chem. 1999, 10, 62–65. [Google Scholar] [CrossRef]
- Corso, A.D.; Caruso, M.; Belvisi, L.; Arosio, D.; Piarulli, U.; Albanese, C.; Fabio, G.; Marsiglio, A.; Sola, F.; Troiani, S.; et al. Synthesis and Biological Evaluation of RGD Peptidomimetic–Paclitaxel Conjugates Bearing Lysosomally Cleavable Linkers. Chem. Eur. J. 2015, 21, 1–10. [Google Scholar] [CrossRef]
- Schmid, B.; Chung, D.E.; Warnecke, A.; Fichtner, I.; Kratz, F. Albumin-binding prodrugs of camptothecin and doxorubicin with an Ala-Leu-Ala-Leu-linker that are cleaved by cathepsin B: Synthesis and antitumor efficacy. Bioconjugate Chem. 2007, 18, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Darmoul, D.; Gratio, V.; Devaud, H.; Laburthe, M. Protease-Activated Receptor 2 in Colon Cancer: Trypsin-Induced MAPK Phosphorylation and Cell Proliferation are Mediated by Epidermal Growth Factor Receptor Transactivation. J. Biol. Chem. 2004, 279, 20927–20934. [Google Scholar] [CrossRef] [PubMed]
- Soreide, K.; Janssen, E.A.; Korner, H.; Baakl, J.P.A. Trypsin in Colorectal Cancer: Molecular Biological Mechanisms of Proliferation, Invasion, and Metastasis. J. Pathol. 2006, 209, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Mimori, K.; Inoue, H.; Mori, M.; Sidransky, D.A. Tumor-suppressive Role for Trypsin in Human Cancer Progression. Cancer. Res. 2003, 63, 6575–6578. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Lin, W.; Yuan, Z.; Wu, J.; Qian, H.; Xu, L.; Chen, S. Development of Ionic Strength/pH/Enzyme Triple-responsive Zwitterionic Hydrogel of the Mixed L-glutamic Acid and L-lysine Polypeptide for Site-specific Drug Delivery. J. Mater. Chem. B 2017, 5, 935–943. [Google Scholar] [CrossRef]
- Olsen, J.V.; Ong, S.-E.; Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Proteomics 2004, 3, 608–614. [Google Scholar] [CrossRef]
- Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated Nanoparticles for Biological and Pharmaceutical Applications. Adv. Drug Deliv. Rev. 2003, 55, 403–419. [Google Scholar] [CrossRef]
- Liu, Z.; Robinson, J.T.; Sun, X.M.; Dai, H.J. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, I.; Harnoy, A.J.; Tirosh, E.; Buzhor, M.; Segal, M.; Frid, L.; Shaharabani, R.; Avinery, R.; Beck, R.; Amir, R.J. Encapsulation and Covalent Binding of Molecular Payload in Enzymatically Activated Micellar Nanocarriers. J. Am. Chem. Soc. 2015, 137, 2276–2284. [Google Scholar] [CrossRef] [PubMed]
- Harnoy, A.J.; Slor, G.; Tirosh, E.; Amir, R.J. The Effect of Photoisomerization on the Enzymatic Hydrolysis of Polymeric Micelles Bearing Photo-Responsive Azobenzene Groups at Their Cores. Org. Biomol. Chem. 2016, 14, 5813–5819. [Google Scholar] [CrossRef] [PubMed]
- Segal, M.; Avinery, R.; Buzhor, M.; Shaharabani, R.; Harnoy, A.J.; Tirosh, E.; Beck, R.; Amir, R.J. Molecular Precision and Enzymatic Degradation: From Readily to Undegradable Polymeric Micelles by Minor Structural Changes. J. Am. Chem. Soc. 2017, 139, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem Int. Ed. 2011, 42, 6288–6308. [Google Scholar] [CrossRef] [PubMed]
- Lila, A.S.A.; Kiwada, H.; Ishida, T. The Accelerated Blood Clearance (ABC) Phenomenon: Clinical Challenge and Approaches to Manage. J. Controlled Release 2013, 172, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.K.; Hempel, G.; Koling, S.; Chan, L.S.; Fisher, T.; Meiselman, H.; Garratty, G. Antibody Against Poly(ethylene glycol) Adversely Affects PEG-Asparaginase Therapy in Acute lymphoblastic leukemia Patients. Cancer 2007, 110, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Dalsin, M.C.; Sizovs, A.T.; Reineke, M.; Hillmyer, M.A. Glucose-Functionalized, Serum-Stable Polymeric Micelles from the Combination of Anionic and RAFT Polymerizations. Macromolecules 2012, 45, 4322–4332. [Google Scholar] [CrossRef]
- Barz, M.; Luxenhofer, R.; Zentel, R.; Vicent, M.J. Overcoming the PEG-addiction: Well-Defined Alternatives to PEG, from Structure–Property Relationships to Better Defined Therapeutics. Polym. Chem. 2011, 2, 1900–1918. [Google Scholar] [CrossRef]
- Gaucher, G.; Asahina, K.; Wang, J.H.; Leroux, J.-C. Effect of Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) as Coating Agent on the Opsonization, Phagocytosis, and Pharmacokinetics of Biodegradable Nanoparticles. Biomacromolecules 2009, 10, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.U.; Yu, Y.C.; Shin, S.J.; Kim, J.; Youk, J.H. One-Pot Synthesis of Poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) Block Copolymers Using a Dual Initiator for RAFT Polymerization and ROP. Macromolecules 2013, 46, 1291–1295. [Google Scholar] [CrossRef]
- Kamada, H.; Tsutsumi, Y.; Yamamoto, Y.; Kihira, T.; Kaneda, Y.; Mu, Y.; Kodaira, H.; Tsunoda, S.I.; Nakagawa, S.; Mayumi, T. Antitumor Activity of Tumor Necrosis Factor-α Conjugated with Polyvinylpyrrolidone on Solid Tumors in Mice. Cancer. Res. 2000, 60, 6416–6420. [Google Scholar] [CrossRef]
- Kanedal, Y.; Tsutsumi, Y.; Yoshioka, Y.; Kamada, H.; Yamamoto, Y.; Kodaira, H.; Tsunoda, S.; Okamoto, T.; Mukai, Y.; Shibata, H.; et al. The Use of PVP as a Polymeric Carrier to Improve the Plasma Half-Life of Drugs. Biomaterials 2004, 25, 3259–3266. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.H.; Satoh, K.; Kamigaito, M.; Okamotot, Y. Xanthate-Mediated Radical Polymerization of N-Vinylpyrrolidone in Fluoroalcohols for Simultaneous Control of Molecular Weight and Tacticity. Macromolecules 2005, 38, 10397–10405. [Google Scholar] [CrossRef]
- Hobson, L.J.; Feast, W.J. Poly(amidoamine) hyperbranched Systems: Synthesis, Structure and Characterization. Polymer 1999, 40, 1279–1297. [Google Scholar] [CrossRef]
- Gillies, E.R.; Jonsson, T.B.; Frechet, J.M.J. Stimuli-Responsive Supramolecular Assemblies of Linear-Dendritic Copolymers. J. Am. Chem. Soc. 2004, 126, 11936–11943. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liu, F.; Kozlovskaya, V.; Palchak, Z.; Kharlampieva, E. Thermoresponsive Micelles from Double LCST-Poly(3-methyl-N-vinylcaprolactam) Block Copolymers for Cancer Therapy. ACS Macro. Lett. 2015, 4, 308–311. [Google Scholar] [CrossRef]
- Romio, M.; Morgese, G.; Trachsel, L.; Babity, S.; Paradisi, C.; Brambilla, D.; Benetti, E.M. Poly(2-oxazoline)–Pterostilbene Block Copolymer Nanoparticles for Dual-Anticancer Drug Delivery. Biomacromolecules 2018, 19, 103–111. [Google Scholar] [CrossRef] [PubMed]
Sample | Mn,tha (kDa) | Weight Ratio of Hydrophobic Dendron b (%) | Mn,NMR (kDa) (DP) c | Mn,GPCd (kDa) | Ð d (Mw/Mn) | DL e (w/w, %) | EE e (w %) |
---|---|---|---|---|---|---|---|
PNVP | 9.8 | - | 10.0 (88) | 29.0 | 1.28 | - | - |
PNVP-b-dendr(Phe-Lys) | 10.6 | 8 | - | 33.8 | 1.34 | - | - |
PNVP-b-dendr(Phe-Lys)2 | 11.6 | 16 | - | 35.4 | 1.32 | 2.7 | 71.2 |
PNVP-b-dendr(Phe-Lys)3 | 13.6 | 28 | - | 37.6 | 1.32 | 3.0 | 71.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Lin, F.; You, D.; Qian, Y.; Wang, Y.; Bi, Y. Self-Assembly and Enzyme Responsiveness of Amphiphilic Linear-Dendritic Block Copolymers Based on Poly(N-vinylpyrrolidone) and Dendritic Phenylalanyl-lysine Dipeptides. Polymers 2019, 11, 1625. https://doi.org/10.3390/polym11101625
Wei J, Lin F, You D, Qian Y, Wang Y, Bi Y. Self-Assembly and Enzyme Responsiveness of Amphiphilic Linear-Dendritic Block Copolymers Based on Poly(N-vinylpyrrolidone) and Dendritic Phenylalanyl-lysine Dipeptides. Polymers. 2019; 11(10):1625. https://doi.org/10.3390/polym11101625
Chicago/Turabian StyleWei, Junwu, Feng Lin, Dan You, Yangyang Qian, Yujia Wang, and Yunmei Bi. 2019. "Self-Assembly and Enzyme Responsiveness of Amphiphilic Linear-Dendritic Block Copolymers Based on Poly(N-vinylpyrrolidone) and Dendritic Phenylalanyl-lysine Dipeptides" Polymers 11, no. 10: 1625. https://doi.org/10.3390/polym11101625
APA StyleWei, J., Lin, F., You, D., Qian, Y., Wang, Y., & Bi, Y. (2019). Self-Assembly and Enzyme Responsiveness of Amphiphilic Linear-Dendritic Block Copolymers Based on Poly(N-vinylpyrrolidone) and Dendritic Phenylalanyl-lysine Dipeptides. Polymers, 11(10), 1625. https://doi.org/10.3390/polym11101625