Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthetic Procedures of SADP Adhesives
2.3. Bond Performance
2.3.1. Manufacture of Plywood
2.3.2. Shear Strength Measurement
2.4. Curing Behavior
2.4.1. TG Analysis
2.4.2. Viscosity-Temperature Characteristics
2.5. Synthesis and Curing Mechanism
2.5.1. High-Performance Liquid Chromatography (HPLC) Analysis
2.5.2. Attenuated Total Reflection-Fourier Transform Infrared Spectra (ATR-FTIR)
2.5.3. X-ray Photoelectron Spectroscopy (XPS) Analysis
3. Results and Discussion
3.1. Shear Strength of Plywoods Prepared Using SADP Adhesives
3.2. Analysis of SADP Curing Behaviors
3.3. Synthesis Mechanism
3.3.1. HPLC Analysis
3.3.2. ATR FT-IR Analysis
3.4. Curing Mechanism
3.4.1. XPS Analysis
3.4.2. ATR-FTIR Analysis
3.4.3. Consideration of the Synthesis and Curing Mechanisms Involved in SADP Adhesive
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, J.; Wang, S.; Zhu, S.; Huang, C.; Yue, Y.; Mei, C.; Xu, X.; Xia, C. Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability and mechanical toughness. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Q.; Ding, Q.Q.; Mei, C.T.; Wu, Q.L.; Yue, Y.Y.; Xu, X.W. An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes. Electrochim. Acta 2019, 318, 660–672. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, M.; Wu, X.Y.; Shi, T.L.; Chen, H.; Wang, H.K. Preparation of nanocellulose aerogel from the poplar (Populus tomentosa) catkin fiber. Forests 2019, 10, 749. [Google Scholar] [CrossRef]
- Han, J.Q.; Lu, K.Y.; Yue, Y.Y.; Mei, C.T.; Huang, C.B.; Wu, Q.L.; Xu, X.W. Nanocellulose-Templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors. Ind. Crop. Prod. 2019, 128, 94–107. [Google Scholar] [CrossRef]
- Umemura, K.; Sugihara, O.; Kawai, S. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard. J. Wood Sci. 2013, 59, 203–208. [Google Scholar] [CrossRef]
- Chen, N.R.; Huang, J.; Li, K.C. Investigation of a new formaldehyde-free adhesive consisting of soybean flour and Kymene (R) 736 for interior plywood. Holzforschung 2019, 73, 409–414. [Google Scholar] [CrossRef]
- Reh, R.; Igaz, R.; Kristak, L.; Ruziak, I.; Gajtanska, M.; Bozikova, M.; Kucerka, M. Functionality of beech bark in adhesive mixtures used in plywood and its effect on the stability associated with material systems. Materials 2019, 12, 1289. [Google Scholar] [CrossRef]
- Aydin, I.; Demirkir, C.; Colak, S.; Colakoglu, G. Utilization of bark flours as additive in plywood manufacturing. Eur. J. Wood Wood Prod. 2017, 75, 63–69. [Google Scholar] [CrossRef]
- Ruziak, I.; Igaz, R.; Kristak, L.; Reh, R.; Mitterpach, J.; Ockajova, A.; Kucerka, M. Influence of urea-formaldehyde adhesive modification with beech bark on chosen properties of plywood. Bioresources 2017, 12, 3250–3264. [Google Scholar] [CrossRef]
- Dorieh, A.; Mahmoodi, N.O.; Mamaghani, M.; Pizzi, A.; Zeydi, M.M. Effect of different acids during the synthesis of urea-formaldehyde adhesives and the mechanical properties of medium-density fiberboards bonded with them. J. Appl. Polym. Sci. 2019, 136, 47256. [Google Scholar] [CrossRef]
- Ferro, F.S.; Silva, D.A.L.; Lahr, F.A.R.; Argenton, M.; Gonzalez-Garcia, S. Environmental aspects of oriented strand boards production. A Brazilian case study. J. Clean. Prod. 2018, 183, 710–719. [Google Scholar] [CrossRef]
- Wang, X.Z.; Chen, X.Z.; Xie, X.Q.; Cai, S.X.; Yuan, Z.R.; Li, Y.J. Multi-Scale evaluation of the effect of phenol formaldehyde resin impregnation on the dimensional stability and mechanical properties of Pinus massoniana Lamb. Forests 2019, 10, 646. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Pereira, J.; Almeida, M.; Ferra, J.; Paiva, N.; Martins, J.; Magalhaes, F.D.; Carvalho, L.H. Low-Cost natural binder for particleboards production: Study of manufacture conditions and stability. Int. J. Adhes. Adhes. 2019, 93, 59–63. [Google Scholar] [CrossRef]
- Luo, J.L.; Zhang, J.Y.; Gao, Q.; Mao, A.; Li, J.Z. Toughening and enhancing melamine-urea-formaldehyde resin properties via in situ polymerization of dialdehyde starch and microphase separation. Polymers 2019, 11, 1167. [Google Scholar] [CrossRef]
- Li, R.J.; Gutierrez, J.; Chung, Y.L.; Frank, C.W.; Billington, S.L.; Sattely, E.S. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green Chem. 2018, 20, 1459–1466. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, S.J.; Kang, H.J.; Zhang, W.; Li, J.Z.; Zhang, S.F.; Huang, A.M. Reduction of energy consumption of green plywood production by implementing high-efficiency thermal conductive bio-adhesive: Assessment from pilot-scaled application. J. Clean. Prod. 2019, 210, 1366–1375. [Google Scholar] [CrossRef]
- Ndiwe, B.; Pizzi, A.; Tibi, B.; Danwe, R.; Konai, N.; Amirou, S. African tree bark exudate extracts as biohardeners of fully biosourced thermoset tannin adhesives for wood panels. Ind. Crop. Prod. 2019, 132, 253–268. [Google Scholar] [CrossRef]
- Kang, H.J.; Wang, Z.; Wang, Y.Y.; Zhao, S.J.; Zhang, S.F.; Li, J.Z. Development of mainly plant protein-derived plywood bioadhesives via soy protein isolate fiber self-reinforced soybean meal composites. Ind. Crop. Prod. 2019, 133, 10–17. [Google Scholar] [CrossRef]
- Polat, T.; Linhardt, R.J. Syntheses and applications of sucrose-based esters. J. Surfactants Deterg. 2001, 4, 415–421. [Google Scholar] [CrossRef]
- Queneau, Y.; Jarosz, S.; Lewandowski, B.; Fitremann, J. Sucrose chemistry and applications of sucrochemicals. Adv. Carbohyd. Chem. Biochem. 2008, 61, 217–292. [Google Scholar]
- Hu, X.; Li, C.Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. Green Chem. 2011, 13, 1676–1679. [Google Scholar] [CrossRef]
- Basso, M.C.; Pizzi, A.; Delmotte, L.; Abdalla, S. Analysis of the cross-linking reaction of lignin with triethyl phosphate by MALDI-TOF and 13C NMR. Polymers 2017, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Basso, M.C.; Pizzi, A.; Polesel Maris, J.; Delmotte, L.; Colin, B.; Rogaume, Y. MALDI-TOF, 13C NMR and FTIR analysis of the cross-linking reaction of condensed tannins by triethyl phosphate. Ind. Crop. Prod. 2017, 95, 621–631. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Hayashi, S.; Xu, W.; Wu, Z.H.; Tanaka, S.; Sun, S.J.; Zhang, M.; Kanayama, K.; Umemura, K. A novel eco-friendly wood adhesive composed by sucrose and ammonium dihydrogen phosphate. Polymers 2018, 10, 1251. [Google Scholar] [CrossRef] [PubMed]
- Agyei-Aye, K.; Chian, M.X.; Lauterbach, J.H.; Moldoveanu, S.C. The role of the anion in the reaction of reducing sugars with ammonium salts. Carbohyd. Res. 2002, 337, 2273–2277. [Google Scholar] [CrossRef]
- Tsuchida, H.; Tachibana, S.; Kitamura, K.; Komoto, M. Formation of deoxyfructosazine and its 6-isomer by browning reaction between fructose and ammonium formate. Agric. Biol. Chem. 1976, 40, 921–925. [Google Scholar]
- Bubnik, Z.; Kadlec, P. Sucrose Solubility; Springer: Boston, MA, USA, 1995; pp. 101–125. [Google Scholar]
- Su, C.-H.; Chen, C.-C.; Liaw, H.-J.; Wang, S.-C. The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers. Procedia Eng. 2014, 84. [Google Scholar] [CrossRef]
- Saeman, J.F. Kinetics of wood saccharification—Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind. Eng. Chem. 1945, 37, 43–52. [Google Scholar] [CrossRef]
- Eggleston, G.; TraskMorrell, B.J.; Vercellotti, J.R. Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues. J. Agric. Food Chem. 1996, 44, 3319–3325. [Google Scholar] [CrossRef]
- Tsuchida, H.; Komoto, M.; Kato, H.; Fujimaki, M. Formation ol deoxy-fructosazme and its 6-isomer on the browning reaction between glucose and ammonia in weak acidic medium. Agric. Biol. Chem. 1973, 37, 2571–2578. [Google Scholar] [CrossRef]
- Abdelkader, A.; Ammar, A.A.; Saleh, S.I. Thermal-Behavior of ammonium dihydrogen phosphate crystals in the temperature-range 25–600-degrees-C. Thermochim. Acta 1991, 176, 293–304. [Google Scholar] [CrossRef]
- Whitfield, M. The hydrolysis of ammonium ions in sea water-a theoretical study. J. Mar. Biol. Assoc. UK 2009, 54, 565–580. [Google Scholar] [CrossRef]
- Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohyd. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Seino, H.; Uchibori, T.; Nishitani, T.; Inamasu, S. Enzymatic-Synthesis of carbohydrate esters of fatty acid(i) esterification of sucrose, glucose, fructose and sorbitol. J. Am. Oil Chem. Soc. 1984, 61, 1761–1765. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Jongen, W.M.F.; van Boekel, M.A.J.S. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Tech. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; da Silva, E.L.; Quirino, S.F.; Cuna, A.; Marcuzzo, J.S.; Matsushima, J.T.; Goncalves, E.S.; Baldan, M.R. Ag@Activated carbon felt composite as electrode for supercapacitors and a study of three different aqueous electrolytes. Mater. Res. Ibero Am. J. 2019, 22. [Google Scholar] [CrossRef]
- Gu, J.Y.; Zuo, Y.F.; Zhang, Y.H.; Tan, H.Y.; Zhu, L.B.; Shen, J. Preparation of plywood using starch adhesives modified with isocyanate. Appl. Mech. Mater. 2010, 26, 1065–1068. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Iroh, J.O. Characterization of polyaniline-polypyrrole composite coatings on low carbon steel: A XPS and infrared spectroscopy study. Appl. Surf. Sci. 2003, 218, 58–69. [Google Scholar] [CrossRef]
- Gonzalezelipe, A.R.; Martinezalonso, A.; Tascon, J.M.D. Xps characterization of coal surfaces—Study of aerial oxidation of brown coals. Surf. Interface Anal. 1988, 12, 565–571. [Google Scholar] [CrossRef]
- Zhuang, X.Z.; Zhan, H.; Song, Y.P.; He, C.; Huang, Y.Q.; Yin, X.L.; Wu, C.Z. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC). Fuel 2019, 236, 960–974. [Google Scholar] [CrossRef]
- Zeng, D.W.; Yung, K.C.; Xie, C.S. XPS investigation of the chemical characteristics of Kapton films ablated by a pulsed TEA CO2 laser. Surf. Coat. Tech. 2002, 153, 210–216. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, K.W.; Choi, S.C.; Hong, C.E.; Choi, I.S.; Jeong, K.; Whang, C.N. Characteristics of polyimide film deposited by ionized cluster beam. Nucl. Instrum. Meth. B 1994, 94, 66–72. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.D.; Bai, C.Y.; Tian, Y.; Li, B.; Zhang, S.; Yang, X.Y.; Ding, S.D.; Xia, C.Q.; Tan, X.Y.; et al. A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium. J. Colloid Interface Sci. 2015, 437, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.M.; Zhou, Z.M.; Bo, M.P. An investigation of the thermal-degradation of melamine phosphonite by Xps and thermal-analysis techniques. Polym. Degrad. Stabil. 1995, 50, 65–70. [Google Scholar] [CrossRef]
- Roy, S.S.; McCann, R.; Papakonstantinou, P.; Maguire, P.; McLaughlin, J.A. The structure of amorphous carbon nitride films using a combined study of NEXAFS, XPS and Raman spectroscopies. Thin Solid Films 2005, 482, 145–150. [Google Scholar] [CrossRef]
- Bentiss, F.; Traisnel, M.; Gengembre, L.; Lagrenee, M. A new triazole derivative as inhibitor of the acid corrosion of mild steel: Electrochemical studies, weight loss determination, SEM and XPS. Appl. Surf. Sci. 1999, 152, 237–249. [Google Scholar] [CrossRef]
- Pigoislandureau, E.; Nicolau, Y.F.; Delamar, M. Xps study of layer-by-layer deposited polypyrrole thin-films. Synth. Met. 1995, 72, 111–119. [Google Scholar] [CrossRef]
- Beta, I.A.; Herve, J.; Geidel, E.; Bohlig, H.; Hunger, B. Inelastic neutron scattering and infrared spectroscopic study of furan adsorption on alkali-metal cation-exchanged faujasites. Spectrochim. Acta A 2001, 57, 1393–1403. [Google Scholar] [CrossRef]
- Surendra, B.S.; Veerabhadraswamy, M. Microwave assisted synthesis of Schiff base via bioplatform chemical intermediate (HMF) derived from Jatropha deoiled seed cake catalyzed by modified Bentonite clay. Mater. Today Proc. 2017, 4, 11968–11976. [Google Scholar] [CrossRef]
- Vaz, P.D.; Ribeiro-Claro, P.J.A. C-H center dot center dot center dot O hydrogen bonds in liquid cyclohexanone revealed by the vC=O splitting and the vC-H blue shift. J. Raman Spectrosc. 2003, 34, 863–867. [Google Scholar] [CrossRef]
- Vassallo, A.M.; Codd, R. Pyrolysis and mesophase formation from sucrose. Carbon 1988, 26, 553–558. [Google Scholar] [CrossRef]
- Perez, E.M.S.; Avalos, M.; Babiano, R.; Cintas, P.; Light, M.E.; Jimenez, J.L.; Palacios, J.C.; Sancho, A. Schiff bases from D-glucosamine and aliphatic ketones. Carbohyd. Res. 2010, 345, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.F.; Peng, L.Q.; Wang, H.L.; Wang, Y.B.; Zhang, H. Environment-Friendly urea-oxidized starch adhesive with zero formaldehyde-emission. Carbohyd. Polym. 2018, 181, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Chis, A.; Fetea, F.; Matei, H.; Socaciu, C. Evaluation of hydrolytic activity of different pectinases on sugar beet (beta vulgaris) substrate using FT-MIR spectroscopy. Not. Bot. Horti. Agrobo. 2011, 39, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, H.J. Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. J. Adhes. Sci. Technol. 2003, 17, 1369–1383. [Google Scholar] [CrossRef]
Adhesives | Proportion (Sucrose/ADP) | Synthesis Time (h) | Synthesis Temperature (°C) | Solid Content (%) | Viscosity (mPa·s) | pH |
---|---|---|---|---|---|---|
SADP 1 | 85/15 | 1 | 90 | 83 | 1266 | 3.48 |
SADP 2 | 2 | 788 | 2.95 | |||
SADP 3 | 3 | 621 | 2.35 | |||
SADP 4 | 4 | 476 | 2.01 |
Adhesives | Hot Pressing Temperature (°C) | Hot Pressing Time (min) | Spread Rate (g/m2) |
---|---|---|---|
150 | |||
SADP 1 | 170 | ||
190 | |||
150 | |||
SADP 2 | 170 | ||
190 | |||
150 | 7 | 140 | |
SADP 3 | 170 | ||
190 | |||
150 | |||
SADP 4 | 170 | ||
190 |
Adhesives | Hot Pressing Temperature (°C) | Wood Failure Rate of Dry Condition (%) | Wood Failure Rate of Wet Condition (%) |
---|---|---|---|
SADP 1 | 150 | 0 | 0 |
170 | 20 | 20 | |
190 | 80 | 55 | |
SADP 2 | 150 | 0 | 0 |
170 | 40 | 35 | |
190 | 85 | 55 | |
SADP 3 | 150 | 5 | 0 |
170 | 70 | 40 | |
190 | 95 | 90 | |
SADP 4 | 150 | 10 | 0 |
170 | 75 | 50 | |
190 | 100 | 100 |
Adhesives | Glucose Content (g/L) | 5-HMF Content (g/L) |
---|---|---|
SADP 1 | 714.67 | 1.00 |
SADP 2 | 616.23 | 9.32 |
SADP 3 | 503.41 | 12.96 |
SADP 4 | 457.82 | 49.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Sun, S.; Wu, D.; Zhang, M.; Huang, C.; Umemura, K.; Yong, Q. Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood. Polymers 2019, 11, 1909. https://doi.org/10.3390/polym11121909
Zhao Z, Sun S, Wu D, Zhang M, Huang C, Umemura K, Yong Q. Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood. Polymers. 2019; 11(12):1909. https://doi.org/10.3390/polym11121909
Chicago/Turabian StyleZhao, Zhongyuan, Shijing Sun, Di Wu, Min Zhang, Caoxing Huang, Kenji Umemura, and Qiang Yong. 2019. "Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood" Polymers 11, no. 12: 1909. https://doi.org/10.3390/polym11121909
APA StyleZhao, Z., Sun, S., Wu, D., Zhang, M., Huang, C., Umemura, K., & Yong, Q. (2019). Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood. Polymers, 11(12), 1909. https://doi.org/10.3390/polym11121909