Synthesis and Self-Assembly of Multistimulus-Responsive Azobenzene-Containing Diblock Copolymer through RAFT Polymerization
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Measurements
2.3. Synthesis of Intermediate and Monomer (Scheme 1)
2.3.1. Synthesis of 2-[2-(2-(4-Methoxy-Azobenzene-4’-oxy)Ethoxy)Ethoxy]Ethanol (1)
2.3.2. Synthesis of 2-[2-(2-(4-Methoxy-Azobenzene-4’-Oxy)Ethoxy)Ethoxy]Ethyl Acrylate (2; Azo)
2.4. Synthesis of Polymers (Scheme 2)
2.4.1. Synthesis of NIPAM-Functionalized Macro-CTA
2.4.2. Synthesis of Azobenzene-Functionalized Diblock Copolymer (poly(NIPAM-b-Azo))
2.5. Fluorescent Titration with Metal Ions
3. Results and Discussion
3.1. Synthesis of Azobenzene Monomer
3.2. Polymer Synthesis and Thermal Properties
3.3. Optical Properties of Azobenzene Monomer and Polymer
3.4. Thermoresponsive Properties of Polymers
3.5. Photoresponsive Properties of Diblock Copolymer
3.6. Ion Sensing Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stumpel, J.E.; Gil, E.R.; Spoelstra, A.B.; Bastiaansen, C.W.M.; Broer, D.J.; Schenning, A.P.H.J. Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels. Adv. Funct. Mater. 2015, 25, 3314–3320. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, G.; Luo, H.; Yao, J.; Liu, Z.; Zhang, D. Highly sensitive thin-film field-effect transistor sensor for ammonia with the DPP-bithiophene conjugated polymer entailing thermally cleavable tert-butoxy groups in the side chains. ACS Appl. Mater. Interfaces 2016, 8, 3635–3643. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tang, L.; Zeng, G.; Zhang, C.; Zhang, Y.; Xie, X. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sens. Actuators B 2016, 223, 280–294. [Google Scholar] [CrossRef]
- Hunter, A.C.; Moghimi, S.M. Smart polymers in drug delivery: A biological perspective. Polym. Chem. 2017, 8, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 2019, 7, 709–729. [Google Scholar] [CrossRef]
- Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B. Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog. Polym. Sci. 2019, 98, 101149. [Google Scholar] [CrossRef]
- Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polym. Chem. 2019, 10, 5686–5720. [Google Scholar] [CrossRef]
- Otaki, M.; Kumai, R.; Sagayama, H.; Goto, H. Synthesis of polyazobenzenes exhibiting photoisomerization and liquid crystallinity. Polymers 2019, 11, 348. [Google Scholar] [CrossRef] [Green Version]
- Fenoll, S.; Brocal, F.; Segura, J.D.; Ortuño, M.; Beléndez, I. Holographic characteristics of photopolymers containing different mixtures of nematic liquid crystals. Polymers 2019, 11, 325. [Google Scholar] [CrossRef] [Green Version]
- Tien, C.L.; Lin, R.J.; Kang, C.C.; Huang, B.Y.; Kuo, C.T.; Huang, S.Y. Electrically controlled diffraction grating in azo dye-doped liquid crystals. Polymers 2019, 11, 1051. [Google Scholar] [CrossRef] [Green Version]
- Oscurato, S.L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics 2018, 7, 1387–1422. [Google Scholar] [CrossRef]
- Emoto, A.; Uchida, E.; Fukuda, T. Optical and physical applications of photocontrollable Materials: Azobenzene-containing and liquid crystalline polymers. Polymers 2012, 4, 150–186. [Google Scholar] [CrossRef] [Green Version]
- Fedele, C.; Netti, P.A.; Cavalli, S. Azobenzene-based polymers: Emerging applications as cell culture platforms. Biomater. Sci. 2018, 6, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M. Gel-based soft actuators driven by light. J. Mater. Chem. B 2019, 7, 4234–4242. [Google Scholar] [CrossRef]
- Rau, H. Spectroscopic properties of organic azo compounds. Angew. Chem. Int. Ed. Engl. 1973, 12, 224–235. [Google Scholar] [CrossRef]
- Cembran, A.; Bernardi, F.; Garavelli, M.; Gagliardi, L.; Orlandi, G. On the mechanism of the cis−trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. J. Am. Chem. Soc. 2004, 126, 3234–3243. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, J.; Kano, N.; Kawashima, T. Fluorescent azobenzenes and aromatic aldimines featuring an N–B interaction. Dalton Trans. 2013, 42, 15826–15834. [Google Scholar] [CrossRef] [Green Version]
- Bandara, H.M.D.; Friss, T.R.; Enriquez, M.M.; Isley, W.; Incarvito, C.; Frank, H.A.; Gascon, J.; Burdette, S.C. Proof for the concerted inversion mechanism in the trans→cis isomerization of azobenzene using hydrogen bonding toinduce isomer locking. J. Org. Chem. 2010, 75, 4817–4827. [Google Scholar] [CrossRef]
- Ma, F.; Zhou, N.; Zhu, J.; Zhang, W.; Fan, L.; Zhu, X. Light-driven fluorescence enhancement of phenylazo indazole-terminated polystyrene. Eur. Polym. J. 2009, 45, 2131–2137. [Google Scholar] [CrossRef]
- Yang, P.C.; Li, C.Y.; Wu, H.; Chiang, J.C. Synthesis and mesomorphic properties of photoresponsive azobenzene-containing chromophores with various terminal groups. J. Taiwan Inst. Chem. Eng. 2012, 43, 480–490. [Google Scholar] [CrossRef]
- Atanase, L.I.; Riess, G. Self-assembly of block and graft copolymers in organic solvents: An overview of recent advances. Polymers 2018, 10, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doncoma, K.E.B.; Blackmana, L.D.; Wrighta, D.B.; Gibsona, M.I.; O’Reilly, R.K. Dispersity effects in polymer self-sssemblies: A matter of hierarchical control. Chem. Soc. Rev. 2017, 46, 4119–4134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Q.; Liu, G.; Liu, X.; Ji, J. Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer. Soft Matter 2010, 6, 5589–5595. [Google Scholar] [CrossRef]
- Dong, R.; Zhu, B.; Zhou, Y.; Yan, D.; Zhu, X. “Breathing” vesicles with jellyfish-like on-off switchable fluorescence behavior. Angew. Chem. Int. Ed. 2012, 51, 11633–11637. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhu, B.; Zhou, Y.; Yan, D.; Zhu, X. Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light. Polym. Chem. 2013, 4, 912–915. [Google Scholar] [CrossRef]
- Qian, S.; Li, S.; Xiong, W.; Khan, H.; Huang, J.; Zhang, W. A new visible light and temperature responsive diblock copolymer. Polym. Chem. 2019, 10, 5001–5009. [Google Scholar] [CrossRef]
- Bo, Q.; Zhao, Y. Fluorescence from an azobenzene-containing diblock copolymer micelle in solution. Langmuir 2007, 23, 5746–5751. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, W.; Zhang, J.; Zhao, P. Polymeric temperature and pH fluorescent sensor synthesized by reversible addition–fragmentation chain transfer polymerization. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 2219–2226. [Google Scholar] [CrossRef]
- Yang, P.C.; Chen, H.C.; Wen, H.W.; Wu, P.I. Preparation and self-assembly of stimuli-responsive azobenzene-containing diblock copolymers through microwave-assisted RAFT polymerization. J. Polym. Sci. A Polym. Chem. 2014, 52, 3107–3117. [Google Scholar] [CrossRef]
- Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, L.; Wu, C. LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules 2006, 39, 2325–2329. [Google Scholar] [CrossRef]
- Warren, N.J.; Armes, S.P. Polymerization-induced self-assembly of block copolymer nanoobjects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 2014, 136, 10174–10185. [Google Scholar] [CrossRef] [PubMed]
- Shieh, Y.T.; Lin, P.Y.; Chen, T.; Kuo, S.W. Temperature-, pH- and CO2-sensitive poly(N-isopropylacryl amide-co-acrylic acid) copolymers with high glass transition temperatures. Polymers 2016, 8, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahiabu, A.; Serpe, M.J. Rapidly responding pH- and temperature-responsive poly (N-isopropylacrylamide)-based microgels and assemblies. ACS Omega 2017, 2, 1769–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, P.; Bera, M.K.; Malik, S.; Kuila, B.K. Amphiphilic and thermoresponsive conjugated block copolymer with its solvent dependent optical and photoluminescence properties: Toward sensing applications. ACS Appl. Mater. Interfaces 2015, 7, 12348–12354. [Google Scholar] [CrossRef]
- Jochum, F.D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483. [Google Scholar] [CrossRef]
- Choe, A.; Yeom, J.; Shanker, R.; Kim, M.P.; Kang, S.; Ko, H. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 2018, 10, 912–922. [Google Scholar] [CrossRef]
- Zhou, S.; Chu, B. Synthesis and volume phase transition of poly(methacrylic acid-co-N-isopropylacrylamide) microgel particles in water. J. Phys. Chem. B 1998, 102, 1364–1371. [Google Scholar] [CrossRef]
- Determan, M.D.; Cox, J.P.; Seifert, S.; Thiyagarajan, P.; Mallapragada, S.K. Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer 2005, 46, 6933–6946. [Google Scholar] [CrossRef]
- Durme, K.V.; Rahier, H.; Mele, B.V. Influence of additives on the thermoresponsive behavior of polymers in aqueous solution. Macromolecules 2005, 38, 10155–10163. [Google Scholar] [CrossRef]
- Kumar, S.; De, P. Fluorescent labelled dual-stimuli (pH/thermo) responsive self-assembled side-chain amino acid based polymers. Polymer 2014, 55, 824–832. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, X.; Xue, W.; Huang, S.; Dong, J.; Wei, L.; Maroncelli, M.; Li, H. Synthesis, structures, and properties of a fluoranthene-based biphenol polymer as a fluorescent nano-thermometer. Chem. Eng. J. 2014, 240, 319–330. [Google Scholar] [CrossRef]
- Li, T.; He, S.; Qu, J.; Wu, H.; Wu, S.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B.Z. Thermoresponsive AIE polymers with fine-tuned response temperature. J. Mater. Chem. C 2016, 4, 2964–2970. [Google Scholar] [CrossRef]
- Ueki, T.; Nakamura, Y.; Lodge, T.P.; Watanabe, M. Light-controlled reversible micellization of a diblock copolymer in an ionic liquid. Macromolecules 2012, 45, 7566–7573. [Google Scholar] [CrossRef]
- Concellón, A.; Blasco, E.; Martínez-Felipe, A.; Martínez, J.C.; Šics, I.; Ezquerra, T.A.; Nogales, A.; Piñol, M.; Oriol, L. Light-responsive self-assembled materials by supramolecular post-functionalization via hydrogen bonding of amphiphilic block copolymers. Macromolecules 2016, 49, 7825–7836. [Google Scholar] [CrossRef]
- Wang, Z.; Yong, T.; Wan, J.; Li, Z.; Zhao, H.; Zhao, Y.; Gan, L.; Yang, X.; Xu, H.; Zhang, C. Temperature-sensitive fluorescent organic nanoparticles with aggregation-induced emission for long-term cellular tracing. ACS Appl. Mater. Interfaces 2015, 7, 3420–3425. [Google Scholar] [CrossRef]
- Ho, C.H.; Yang, K.N.; Lee, S.N. Mechanistic study of trans⇄cis isomerization of the substituted azobenzene moiety bound on a liquid-crystalline polymer. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 2296–2307. [Google Scholar] [CrossRef]
- Tong, X.; Cui, L.; Zhao, Y. Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers. Macromolecules 2004, 37, 3101–3112. [Google Scholar] [CrossRef]
- Sin, S.L.; Gan, L.H.; Hu, X.; Tam, K.C.; Gan, Y.Y. Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film. Macromolecules 2005, 38, 3943–3948. [Google Scholar] [CrossRef]
- Hemraz, U.; Lu, A.; Sunasee, R.; Boluk, Y. A new visible light and temperature responsive diblock copolymer. J. Colloid Interface Sci. 2014, 430, 157–165. [Google Scholar] [CrossRef]
- Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149–2180. [Google Scholar] [CrossRef] [PubMed]
- Deans, R.; Kim, J.; Machacek, M.R.; Swager, T.M. A poly(p-phenyleneethynylene) with a highly emissive aggregated phase. J. Am. Chem. Soc. 2000, 122, 8565–8566. [Google Scholar] [CrossRef]
- Han, M.; Hara, M. Intense fluorescence from light-driven self-assembled aggregates of nonionic azobenzene derivative. J. Am. Chem. Soc. 2005, 127, 10951–10955. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yang, J.; Xia, Y.; Wang, X.; Xue, X.; Yang, H.; Wang, G.; Jiang, B.; Li, F.; Komarneni, S. Light and temperature as dual stimuli lead to self-assembly of hyperbranched azobenzene-terminated poly(N-isopropylacrylamide). Polymers 2016, 8, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inthasot, A.; Tung, S.T.; Chiu, S.H. Using alkali metal ions to template the synthesis of interlocked molecules. Acc. Chem. Res. 2018, 51, 1324–1337. [Google Scholar] [CrossRef] [PubMed]
- Hiratani, K.; Kaneyama, M.; Nagawa, Y.; Koyama, E.; Kanesato, M. Synthesis of [1]rotaxane via covalent bond formation andits unique fluorescent response by energy transfer in the presence of lithium ion. J. Am. Chem. Soc. 2004, 126, 13568–13569. [Google Scholar] [CrossRef]
- Pang, J.; Ye, Y.; Tian, Z.; Pang, X.; Wu, C. Theoretical insight into azobis-(benzo-18-crown-6) ether combined with the alkaline earth metal cations. Comp. Theor. Chem. 2015, 1066, 28–33. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lai, C.C.; Liu, Y.H.; Peng, S.M.; Chiu, S.H. Sodium ions template the formation of rotaxanes from BPX26C6 and nonconjugated amide and urea functionalities. Angew. Chem. Int. Ed. 2013, 52, 10231–10236. [Google Scholar] [CrossRef]
Polymer | Mn (×103) a | PDI a | Mn (×103) b | Td (°C) c | Molar Ratio (x:y) d |
---|---|---|---|---|---|
NIPAM macro-CTA | 6.98 | 1.25 | 7.09 | 351.8 | 60:0 |
poly(NIPAM-b-Azo) | 9.96 | 1.24 | 10.23 | 370.8 | 60:7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.-C.; Chien, Y.-H.; Tseng, S.-H.; Lin, C.-C.; Huang, K.-Y. Synthesis and Self-Assembly of Multistimulus-Responsive Azobenzene-Containing Diblock Copolymer through RAFT Polymerization. Polymers 2019, 11, 2028. https://doi.org/10.3390/polym11122028
Yang P-C, Chien Y-H, Tseng S-H, Lin C-C, Huang K-Y. Synthesis and Self-Assembly of Multistimulus-Responsive Azobenzene-Containing Diblock Copolymer through RAFT Polymerization. Polymers. 2019; 11(12):2028. https://doi.org/10.3390/polym11122028
Chicago/Turabian StyleYang, Po-Chih, Yueh-Han Chien, Shih-Hsuan Tseng, Chia-Chung Lin, and Kai-Yu Huang. 2019. "Synthesis and Self-Assembly of Multistimulus-Responsive Azobenzene-Containing Diblock Copolymer through RAFT Polymerization" Polymers 11, no. 12: 2028. https://doi.org/10.3390/polym11122028
APA StyleYang, P. -C., Chien, Y. -H., Tseng, S. -H., Lin, C. -C., & Huang, K. -Y. (2019). Synthesis and Self-Assembly of Multistimulus-Responsive Azobenzene-Containing Diblock Copolymer through RAFT Polymerization. Polymers, 11(12), 2028. https://doi.org/10.3390/polym11122028