Plasticization of Cottonseed Protein/Polyvinyl Alcohol Blend Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Cottonseed Protein (CP)
2.3. Preparation of the CP/PVA Films
2.4. Preparation of the Plasticized Films
2.5. Characterization
3. Results and Discussion
3.1. Film Morphology
3.2. FTIR Spectroscopy
3.3. XRD Analysis
3.4. Mechanical Properties
3.5. Moisture Sensitivity of the Blend Films
3.6. Barrier Properties of the Films Prepared
3.6.1. Water Vapor Permeability (WVP)
3.6.2. Oxygen Permeability (OP)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adilah, Z.M.; Jamilah, B.; Hanani, Z.N. Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll. 2018, 74, 207–218. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, B.L.; He, M.; Yin, G.Q.; Cui, Y.D. The structure, tensile properties and water resistance of hydrolyzed feather keratin-based bioplastics. Chin. J. Chem. Eng. 2016, 24, 415–420. [Google Scholar] [CrossRef]
- Wu, S.F.; Chen, X.J.; Yi, M.H.; Ge, J.F.; Yin, G.Q.; Li, X.M.; He, M. Improving Thermal, Mechanical, and Barrier Properties of Feather Keratin/Polyvinyl Alcohol/Tris (hydroxymethyl) aminomethane Nanocomposite Films by Incorporating Sodium Montmorillonite and TiO2. Nanomaterials 2019, 9, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.B. Study on the Prepapration and Properties of Degradable Plastics Derived from Glandless Cottonseed Protein. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2016. [Google Scholar]
- Ma, M.T.; Ren, Y.J.; Xie, W.; Zhou, D.y.; Tang, S.R.; Kuang, M.; Wang, Y.Q.; Du, S.K. Physicochemical and functional properties of protein isolate obtained from cottonseed meal. Food Chem. 2018, 240, 856–862. [Google Scholar] [CrossRef]
- Anderson, A.D.; Alam, M.S.; Watanabe, W.O.; Carrolla, P.M.; Wedegaertnerb, T.C.; Dowd, M.K. Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata. Aquaculture 2016, 464, 618–628. [Google Scholar] [CrossRef]
- Richardson, C.M.; Siccardi, A.J.; Palle, S.R.; Campbell, L.M.; Puckhaber, L.; Stipanovic, R.D.; Wedegaertner, T.C.; Rathore, K.S.; Samocha, T.M. Evaluation of ultra-low gossypol cottonseed and regular glandless cottonseed meals as dietary protein and lipid sources for L itopenaeus vannamei reared under zero-exchange conditions. Aquac. Nutr. 2016, 22, 427–434. [Google Scholar] [CrossRef]
- Jones, L.A. Gossypol and some other terpenoids, flavonoids, and phenols that affect quality of cottonseed protein. J. Am. Oil Chem. Soc. 1979, 56, 727–730. [Google Scholar] [CrossRef]
- Martinez, W.H.; Berardi, L.C.; Goldblatt, L.A. Cottonseed protein products. Composition and functionality. J. Agric. Food Chem. 1970, 18, 961–968. [Google Scholar] [CrossRef]
- Cheng, H.N.; Kilgore, K.; Ford, C.; Fortier, C.; Dowd, M.K.; He, Z.Q. Cottonseed protein-based wood adhesive reinforced with nanocellulose. J. Adhes. Sci. Technol. 2019, 33, 1357–1368. [Google Scholar] [CrossRef]
- Li, J.; Pradyawong, S.; He, Z.Q.; Sun, X.S.; Wang, D.H.; Cheng, H.N.; Zhong, J.Y. Assessment and application of phosphorus/calcium-cottonseed protein adhesive for plywood production. J. Clean. Prod. 2019, 229, 454–462. [Google Scholar] [CrossRef]
- Marquie, C.; Aymard, C.; Cuq, J.L.; Stephane, G. Biodegradable packaging made from cottonseed flour: Formation and improvement by chemical treatments with gossypol, formaldehyde, and glutaraldehyde. J. Agric. Food Chem. 1995, 43, 2762–2767. [Google Scholar] [CrossRef]
- Grevellec, J.; Marquié, C.; Ferry, L.; Alain, C.; Viviane, V. Processability of cottonseed proteins into biodegradable materials. Biomacromolecules 2001, 2, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.B.; Cui, Y.D.; Yin, G.Q.; Zhen, Y.J.; Lie, W.L. Environment-Friendly Cottonseed Protein Bioplastics: Preparation and Properties. Adv. Mater. Res. 2011, 311–313, 1518–1521. [Google Scholar] [CrossRef]
- Yue, H.; Cui, Y.; Shuttleworth, P.S.; Clark, J.H. Preparation and characterisation of bioplastics made from cottonseed protein. Green Chem. 2012, 14, 2009–2016. [Google Scholar] [CrossRef]
- Yue, H.; Fernandez-Blazquez, J.P.; Shuttleworth, P.S.; Cui, Y.D.; Elliset, G. Thermomechanical relaxation and different water states in cottonseed protein derived bioplastics. Rsc. Adv. 2014, 4, 32320–33232. [Google Scholar] [CrossRef]
- Wang, C.S.; Chen, L. Preparation and properties of cottonseed protein/polyurethane composite. J. Shenyang Univ. Technol. 2012, 34, 31–34. [Google Scholar]
- Gentile, G.; Cocca, M.; Avolio, R.; Errico, M.; Avella, M. Effect of microfibrillated cellulose on microstructure and properties of poly (vinyl alcohol) foams. Polymers 2018, 10, 813. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, D.; Janani, G.; Chakraborty, B.; Nandi, S.K.; Mandal, B.B. Functionalized PVA–silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling. J. Tissue Eng. Regen. Med. 2018, 12, e1559–e1570. [Google Scholar] [CrossRef]
- Tian, H.; Yan, J.; Rajulu, A.V.; Xiang, A.; Luo, X.G. Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. Int. J. Biol. Macromol. 2017, 96, 518–523. [Google Scholar] [CrossRef]
- Fang, Q.; Zhu, M.; Yu, S.; Sui, G.; Yang, X. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Mater. Sci. Eng. B 2016, 214, 1–10. [Google Scholar] [CrossRef]
- Pereira, V.A., Jr.; de Arruda, I.N.Q.; Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Avella, M.; Cocca, M.; Errico, M.E.; Gennaro, G. Polyvinyl alcohol biodegradable foams containing cellulose fibres. J. Cell. Plast. 2012, 48, 459–470. [Google Scholar] [CrossRef]
- Avella, M.; Cocca, M.; Errico, M.E.; Gennaro, G. Biodegradable PVOH-based foams for packaging applications. J. Cell. Plast. 2011, 47, 271–281. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Yi, M.; Ge, J.; Yin, G.; Li, X. Preparation and Physicochemical Properties of Blend Films of Feather Keratin and Poly(vinyl alcohol) Compatibilized by Tris(hydroxymethyl)aminomethane. Polymers 2018, 10, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Zhang, B.; Dou, Y.; Yin, G.; Cui, Y.; Chen, X. Fabrication and characterization of electrospun feather keratin/poly(vinyl alcohol) composite nanofibers. RSC Adv. 2017, 7, 9854–9861. [Google Scholar] [CrossRef] [Green Version]
- Кoзлoв, П.В.; Папкoв, С.П.; Zhang, L. Principle and Technology of Polymer Plasticization, 1st ed.; Light Industry Press: Beijing, China, 1990; pp. 8–12. [Google Scholar]
- Zhang, B.; Cui, Y.; Yin, G.; Li, X.; Pan, C. Synthesis and Swelling Proper ties of CP-PAA Superabso rbent Resin. Mater. Rep. 2009, 23, 103–106. [Google Scholar]
- Lórenz-Fonfría, V.A.; Padrós, E. Method for the estimation of the mean Lorentzian bandwidth in spectra composed of an unknown number of highly overlapped bands. Appl. Spectrosc. 2008, 62, 689–700. [Google Scholar] [CrossRef]
- Murayama, K.; Tomida, M. Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry 2004, 43, 11526–11532. [Google Scholar] [CrossRef]
- Dong, A.; Huang, P.; Caughey, W.S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 1990, 29, 3303–3308. [Google Scholar] [CrossRef]
- ASTM International. ASTM D638-14 Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Krimm, S.; Bandekar, J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Adv. Protein Chem. 1986, 38, 181–364. [Google Scholar]
- Ma, Q.; Du, L.; Yang, Y.; Wang, L. Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocoll. 2017, 63, 677–684. [Google Scholar] [CrossRef]
- Rao, J.K.; Raizada, A.; Ganguly, D.; Mankad, M.M.; Satayanarayana, S.V.; Madhu, G.M. Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films. J. Mater. Sci. 2015, 50, 7064–7074. [Google Scholar] [CrossRef]
- Ayutthaya, S.I.N.; Tanpichai, S.; Sangkhun, W.; Wootthikanokkhan, J. Effect of clay content on morphology and processability of electrospun keratin/poly (lactic acid) nanofiber. Int. J. Biol. Macromol. 2016, 85, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Zoccola, M.; Aluigi, A.; Vineis, C.; Tonin, C.; Ferrero, F.; Piacentino, M.G. Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules 2008, 9, 2819–2825. [Google Scholar] [CrossRef] [PubMed]
- Yan, Zh. Interaction Between Soy Protein Isolate Composites by Two-Dimensional Correlation Infrared Spectroscopy. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2017. [Google Scholar]
- Sengwa, R.J.; Choudhary, S. Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 2014, 131, 40617. [Google Scholar] [CrossRef]
- Qu, A.Y. Preparation and Properties of Corn Powder/PVA Blending Films. Master’s Thesis, Lanzhou Jiaotong University, Gansu, China, 2018. [Google Scholar]
- He, L.L. Study on the Preparation and Properties of Soy Protein/PVA Blendings. Master’s Thesis, Tianjin University of Science&Technology, Tianjin, China, March 2013. [Google Scholar]
- Ma, Q.S. Research of Polyvinyl chloride Modified by X Amine, Triethanolamine, Urea. Master’s Thesis, North University of China, Shanxi, China, 2008. [Google Scholar]
- Sánchez-González, L.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. J. Food Eng. 2011, 105, 246–253. [Google Scholar] [CrossRef]
- Acosta, S.; Chiralt, A.; Santamarina, P.; Rosello, J.; González-Martínez, C.; Cháfer, M. Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocoll. 2016, 61, 233–240. [Google Scholar] [CrossRef]
- Zhu, A.; Mai, W.; Lin, X. Comparison on the Barrier Properties of Several Plastic Films for Food Packaging. Packag. Eng. 2018, 39, 74–78. [Google Scholar]
- Avolio, R.; Castaldo, R.; Gentile, G.; Ambrogi, V.; Fiori, S.; Avella, M.; Cocca, M.; Errico, M.E. Plasticization of poly (lactic acid) through blending with oligomers of lactic acid: Effect of the physical aging on properties. Eur. Polym. J. 2015, 66, 533–542. [Google Scholar] [CrossRef]
Sample | Secondary Structure Area Percentage | ||
---|---|---|---|
β-Sheet (%) | α-Helix (%) | β-Turn (%) | |
C3P7 | 28.3 | 63.4 | 8.3 |
20%-Gly | 27.2 | 61.8 | 11.0 |
20%-TEA | 24.2 | 64.7 | 11.1 |
20%-EG | 25.7 | 64.0 | 10.3 |
20%-PEG | 26.0 | 63.4 | 10.6 |
Sample | WVP (× 10−12 g·cm−1·s−1·Pa−1) | OP (× 10−5 cm3·m−2·d−1·Pa−1) | Thickness (mm) |
---|---|---|---|
C3P7 | 1.03 ± 0.05 | 1661 ± 8 | 0.06 ± 0.005 |
5%-Gly | 1.39 ± 0.13 | 1072 ± 3 | 0.072 ± 0.007 |
10%-Gly | 1.36 ± 0.15 | 381.5 ± 1.4 | 0.076 ± 0.004 |
20%-Gly | 2.53 ± 0.23 | 75.72 ± 1.12 | 0.068 ± 0.005 |
5%-TEA | 1.16 ± 0.08 | 1057 ± 4 | 0.057 ± 0.004 |
10%-TEA | 1.5 ± 0.16 | 345.5 ± 1.8 | 0.060 ± 0.01 |
20%-TEA | 2.04 ± 0.18 | 26.18 ± 0.43 | 0.063 ± 0.03 |
5%-EG | 1.16 ± 0.11 | 1062 ± 3.2 | 0.073 ± 0.05 |
10%-EG | 1.35 ± 0.12 | 346.3 ± 1.3 | 0.072 ± 0.06 |
20%-EG | 2.63 ± 0.11 | 53.14 ± 0.81 | 0.080 ± 0.01 |
5%-PEG | 1.22 ± 0.05 | 1634 ± 5 | 0.060 ± 0 |
10%-PEG | 1.55 ± 0.09 | 98.41 ± 3.2 | 0.070 ± 0 |
20%-PEG | 1.93 ± 0.17 | 64.01 ± 1.50 | 0.067 ± 0.003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Ding, J.; Yan, X.; Yan, W.; He, M.; Yin, G. Plasticization of Cottonseed Protein/Polyvinyl Alcohol Blend Films. Polymers 2019, 11, 2096. https://doi.org/10.3390/polym11122096
Chen W, Ding J, Yan X, Yan W, He M, Yin G. Plasticization of Cottonseed Protein/Polyvinyl Alcohol Blend Films. Polymers. 2019; 11(12):2096. https://doi.org/10.3390/polym11122096
Chicago/Turabian StyleChen, Wenjie, Jiao Ding, Xuming Yan, Wei Yan, Ming He, and Guoqiang Yin. 2019. "Plasticization of Cottonseed Protein/Polyvinyl Alcohol Blend Films" Polymers 11, no. 12: 2096. https://doi.org/10.3390/polym11122096
APA StyleChen, W., Ding, J., Yan, X., Yan, W., He, M., & Yin, G. (2019). Plasticization of Cottonseed Protein/Polyvinyl Alcohol Blend Films. Polymers, 11(12), 2096. https://doi.org/10.3390/polym11122096