The Preparation and Study of Ethylene Glycol-Modified Graphene Oxide Membranes for Water Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO nanosheets and GO/EG
2.3. Fabrication of GO and GO/EG composite membranes
2.4. Characterization of GO and GO/EG composite membranes
2.5. GO and GO/EG composite membranes permeance and rejection test
Calculation of Membrane Interlayer Spacing
3. Results
3.1. SEM analysis
3.2. Thermal gravimetric analysis
3.3. FTIR analysis
3.4. XPS analysis
3.5. Water permeance tests and permeability
3.6. Rejection tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Chae, H.R.; Won, Y.J.; Lee, K.; Lee, C.H.; Hong, H.L.; Kim, I.C.; Lee, J.M. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci. 2013, 448, 223–230. [Google Scholar] [CrossRef]
- Hegab, H.M.; Zou, L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J. Membr. Sci. 2015, 484, 95–106. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Seol, J.H.; Jo, I.; Moore, A.L.; Lindsay, L.; Aitken, Z.H.; Pettes, M.T.; Li, X.; Yao, Z.; Huang, R.; Broido, D. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Heersche, H.B.; Jarillo-Herrero, P.; Oostinga, J.B.; Vandersypen, L.M.; Morpurgo, A.F. Bipolar supercurrent in graphene. Nature 2007, 446, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Abdala, A.; Macosko, C. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 2013, 131, 1–15. [Google Scholar] [CrossRef]
- He, H.; Klinowski, J.; Forster, M.; Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, 53–56. [Google Scholar] [CrossRef]
- Gao, W. The Chemistry of Graphene Oxide; Springer International Publishing: Cham, Switzerland, 2015; pp. 61–95. [Google Scholar]
- Sun, P.; Zheng, F.; Zhu, M.; Song, Z.; Wang, K.; Zhong, M.; Wu, D.; Little, R.B.; Xu, Z.; Zhu, H. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-interactions. Acs Nano 2014, 8, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Geim, A.K. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.; Cuong, T.V.; Hur, S.H.; Shin, E.W.; Kim, J.S.; Jin, S.C.; Kim, E.J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 2010, 48, 1945–1951. [Google Scholar] [CrossRef]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2015, 448, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.; Vasu, K.S.; Williams, C.D.; Gopinadhan, K.; Su, Y.; Cherian, C.T.; Dix, J.; Prestat, E.; Haigh, S.J.; Grigorieva, I.V. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546. [Google Scholar] [CrossRef]
- Chen, L.; Shi, G.; Shen, J.; Peng, B.; Zhang, B.; Wang, Y.; Bian, F.; Wang, J.; Li, D.; Qian, Z. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Sci. Found. China 2017, 550, 380. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, B.M.; Isloor, A.M.; Ismail, A.F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 2013, 313, 199–207. [Google Scholar] [CrossRef]
- Sun, S.L.; Han, J.; Kwon, Y.T.; Kang, M.S.; Lee, I.Y.; An, K.S. Fabrication of Chemical Functionalized Graphene Solution. IEEE Trans. Microw. Theory Tech. 2012, 45, 253–259. [Google Scholar]
- Zhao, Y.C.; Huang, L.J.; Wang, Y.X.; Tang, J.G.; Wang, Y.; Liu, J.X.; Belfiore, L.A.; Kipper, M.J. Synthesis of graphene oxide/rare-earth complex hybrid luminescent materials via π-π stacking and their pH-dependent luminescence. J. Alloy. Compd. 2016, 687, 95–103. [Google Scholar] [CrossRef]
- Liu, G.; Huang, L.; Wang, Y.; Tang, J.; Wang, Y.; Cheng, M.; Zhang, Y.; Kipper, M.J.; Belfiore, L.A.; Ranil, W.S. Preparation of a graphene/silver hybrid membrane as a new nanofiltration membrane. Rsc Adv. 2017, 7, 49159–49165. [Google Scholar] [CrossRef]
- Cheng, M.; Huang, L.; Wang, Y.; Zhao, Y.; Tang, J.; Wang, Y.; Zhang, Y.; Kipper, M.J. Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J. Mater. Sci. 2018. [Google Scholar] [CrossRef]
- Cheng, M.; Huang, L.; Wang, Y.; Zhao, Y.; Tang, J.; Wang, Y.; Zhang, Y.; Kipper, M.J. Reduced graphene oxide-gold nanoparticle membrane for water purification. Sep. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Brodie, B.C. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 2009, 149, 249–259. [Google Scholar]
- Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Berichte Der Dtsch. Chem. Ges. 2006, 31, 1481–1487. [Google Scholar] [CrossRef]
- Kovtyukhova, N.I.; Ollivier, P.J.; Martin, B.R.; Mallouk, T.E.; Chishik, S.A.; Buzaveva, E.V.; Gorchinskiy, A.D. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater. 1999, 11, 771–778. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar]
- Yu, L.; Zhang, Y.; Zhang, B.; Liu, J.; Zhang, H.; Song, C. Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci. 2013, 447, 452–462. [Google Scholar] [CrossRef]
- Layek, R.K.; Kuila, A.; Chatterjee, D.P.; Nandi, A.K. Amphiphilic poly(N-vinyl pyrrolidone) grafted graphene by reversible addition and fragmentation polymerization and the reinforcement of poly(vinyl acetate) films. J. Mater. Chem. A 2013, 1, 10863–10874. [Google Scholar] [CrossRef]
- Fu, P.H.; Ewen Silvester, A.; Senior, G.D. Spectroscopic Characterization of Ethyl Xanthate Oxidation Products and Analysis by Ion Interaction Chromatography. Anal. Chem. 2000, 72, 4836. [Google Scholar]
- Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P.M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010, 48, 1124–1130. [Google Scholar] [CrossRef]
- Speck, F.; Ostler, M.; Röhrl, J.; Emtsev, K.V.; Hundhausen, M.; Ley, L.; Seyller, T. Atomic layer deposited aluminum oxide films on graphite and graphene studied by XPS and AFM. Phys. Status Solidi 2010, 7, 398–401. [Google Scholar] [CrossRef]
- Shao, L.; Bai, Y.P.; Huang, X.; Meng, L.H.; Ma, J. Fabrication and characterization of solution cast MWNTs/PEI nanocomposites. J. Appl. Polym. Sci. 2010, 113, 1879–1886. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Zhang, X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 2014, 27, 249–254. [Google Scholar] [CrossRef]
- Nakajima, T.; Mabuchi, A.; Hagiwara, R. A new structure model of graphite oxide. Carbon 1988, 26, 357–361. [Google Scholar] [CrossRef]
- Pope, C.G. X-Ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129–131. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, G.; Deng, B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 2016, 379, 93–101. [Google Scholar] [CrossRef]
VOS | GO MT | GO P | GO IP | GO/EG MT | GO/EG P | GO/EG IP |
---|---|---|---|---|---|---|
ml | 10−6 m | L m−2 h−1 bar-1 | 10−6 L m−1 h−1 bar−1 | 10−6 m | L m−2 h−1 bar−1 | 10−6 L m−1 h−1 bar−1 |
0.5 | 0.36 ± 0.03 | 205 ± 10 | 74 ± 4 | 0.35 ± 0.03 | 110 ± 5 | 39 ± 2 |
1.0 | 0.72 ± 0.03 | 103 ± 5 | 74 ± 4 | 0.70 ± 0.03 | 58 ± 3 | 41 ± 2 |
1.5 | 1.08 ± 0.03 | 51 ± 3 | 55 ± 3 | 1.05 ±0.03 | 40 ± 2 | 42 ± 2 |
2.0 | 1.44 ± 0.03 | 31 ± 2 | 45 ± 2 | 1.40 ± 0.03 | 27 ± 1 | 38 ± 2 |
2.5 | 1.80 ± 0.03 | 24 ± 1 | 43 ± 2 | 1.75 ± 0.03 | 21 ± 1 | 37 ± 2 |
3.0 | 2.16 ± 0.03 | 19 ± 1 | 41 ± 2 | 2.10 ± 0.03 | 18 ± 1 | 38 ± 2 |
Sample | Roughness Average (Ra) | Root mean Square Roughness (Rq) |
---|---|---|
GO | 136 ± 5nm | 169 ± 5nm |
GO/EG | 336 ± 5nm | 407 ± 5nm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Huang, L.-j.; Wang, Y.-x.; Tang, J.-g.; Wang, Y.; Cheng, M.-m.; Du, Y.-c.; Yang, K.; Kipper, M.J.; Hedayati, M. The Preparation and Study of Ethylene Glycol-Modified Graphene Oxide Membranes for Water Purification. Polymers 2019, 11, 188. https://doi.org/10.3390/polym11020188
Zhang Y, Huang L-j, Wang Y-x, Tang J-g, Wang Y, Cheng M-m, Du Y-c, Yang K, Kipper MJ, Hedayati M. The Preparation and Study of Ethylene Glycol-Modified Graphene Oxide Membranes for Water Purification. Polymers. 2019; 11(2):188. https://doi.org/10.3390/polym11020188
Chicago/Turabian StyleZhang, Yang, Lin-jun Huang, Yan-xin Wang, Jian-guo Tang, Yao Wang, Meng-meng Cheng, Ying-chen Du, Kun Yang, Matt J. Kipper, and Mohammadhasan Hedayati. 2019. "The Preparation and Study of Ethylene Glycol-Modified Graphene Oxide Membranes for Water Purification" Polymers 11, no. 2: 188. https://doi.org/10.3390/polym11020188
APA StyleZhang, Y., Huang, L. -j., Wang, Y. -x., Tang, J. -g., Wang, Y., Cheng, M. -m., Du, Y. -c., Yang, K., Kipper, M. J., & Hedayati, M. (2019). The Preparation and Study of Ethylene Glycol-Modified Graphene Oxide Membranes for Water Purification. Polymers, 11(2), 188. https://doi.org/10.3390/polym11020188