Flame Retardant Behavior of Ternary Synergistic Systems in Rigid Polyurethane Foams
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of RPUFs
2.3. Characterization
3. Results and Discussion
3.1. Flame Retardancy
3.2. The Analysis of Residual Char Digital Photos
3.3. SEM and Elemental Analysis of Residues after Cone Calorimeter Test
3.4. Ternary Synergistic Flame Retardant Mechanism of ATH/BH/EG in RPUFs
3.5. Physical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, X.; Tu, R.; Cheng, X.D.; Zhu, S.G.; Ma, J.W.; Fang, T.Y. Experimental study of thermal behavior of insulation material rigid polyurethane in parallel, symmetric, and adjacent building facade constructions. Polymers 2018, 10, 1104. [Google Scholar] [CrossRef]
- Huang, G.B.; Yang, J.G.; Wang, X.; Gao, J.R.; Liang, H.D. A phosphorus-nitrogen containing dendrimer reduces the flammability of nanostructured polymers with embedded self-assembled gel networks. J. Mater. Chem. A 2013, 1, 1677–1687. [Google Scholar] [CrossRef]
- Li, Y.C.; Kim, Y.S.; Shields, J.; Davis, R. Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. J. Mater. Chem. A 2013, 1, 12987–12997. [Google Scholar] [CrossRef]
- Jimenez, M.; Lesaffre, N.; Bellayer, S.; Dupretz, R.; Vandenbossche, M.; Duquesne, S.; Bourbigot, S. Novel flame retardant flexible polyurethane foam: Plasma induced graft-polymerization of phosphonates. RSC Adv. 2015, 5, 63853–63865. [Google Scholar] [CrossRef]
- Gunther, M.; Lorenzetti, A.; Schartel, B. Fire phenomena of rigid polyurethane foams. Polymers 2018, 10, 1116. [Google Scholar] [CrossRef]
- Pauzi, N.N.P.N.; Majid, R.A.; Dzulkifli, M.H.; Yahya, M.Y. Development of rigid bio-based polyurethane foam reinforced with nanoclay. Compos. Part B Eng. 2014, 67, 521–526. [Google Scholar] [CrossRef]
- Patrick, J.F.; Sottos, N.R.; White, S.R. Microvascular based self-healing polymeric foam. Polymer 2012, 53, 4231–4240. [Google Scholar] [CrossRef]
- Jiao, L.L.; Xu, G.D.; Wang, Q.S.; Xu, Q.; Sun, J.H. Kinetics and volatile products of thermal degradation of building insulation materials. Thermochim. Acta 2012, 547, 120–125. [Google Scholar] [CrossRef]
- Pardo-Alonso, S.; Solorzano, E.; Brabant, L.; Vanderniepen, P.; Dierick, M.; Van Hoorebeke, L.; Rodriguez-Perez, M.A. 3D Analysis of the progressive modification of the cellular architecture in polyurethane nanocomposite foams via X-ray microtomography. Eur. Polym. J. 2013, 49, 999–1006. [Google Scholar] [CrossRef]
- Wen, Z.B.; Zhang, T.H.; Hui, Y.; Wang, W.L.; Yang, K.K.; Zhou, Q.; Wang, Y.Z. Elaborate fabrication of well-defined side-chain liquid crystalline polyurethane networks with triple-shape memory capacity. J. Mater. Chem. A 2015, 3, 13435–13444. [Google Scholar] [CrossRef]
- Verdolotti, L.; Lavorgna, M.; Di Maio, E.; Iannace, S. Hydration-induced reinforcement of rigid polyurethane-ecement foams: The effect of the co-continuous morphology on the thermal-oxidative stability. Polym. Degrad. Stab. 2013, 98, 64–72. [Google Scholar] [CrossRef]
- Koenig, A.; Kroke, E. Flame retardancy working mechanism of methyl-DOPO and MPP in flexible polyurethane foam. Fire Mater. 2012, 36, 1–15. [Google Scholar] [CrossRef]
- Usta, N. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter. J. Appl. Polym. Sci. 2012, 124, 3372–3382. [Google Scholar] [CrossRef]
- Zhang, A.Z.; Zhang, Y.H.; Lv, F.Z.; Chu, P.K. Synergistic effects of hydroxides and dimethyl methylphosphonate on rigid halogen-free and flame-retarding polyurethane foams. J. Appl. Polym. Sci. 2013, 128, 347–353. [Google Scholar] [CrossRef]
- Feng, F.F.; Qian, L.J. The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polym. Compos. 2014, 35, 301–309. [Google Scholar] [CrossRef]
- Hu, X.M.; Wang, D.M.; Wang, S.L. Synergistic effects of expandable graphite and dimethyl methyl phosphonate on the mechanical properties, fire behavior, and thermal stability of a polyisocyanurate-polyurethane foam. Int. J. Min. Sci. Technol. 2013, 23, 13–20. [Google Scholar] [CrossRef]
- Qian, L.J.; Feng, F.F.; Tang, S. Bi-phase flame-retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite. Polymer 2014, 55, 95–101. [Google Scholar] [CrossRef]
- Cho, J.H.; Vasagar, V.; Shanmuganathan, K.; Jones, A.R.; Nazarenko, S.; Ellison, C.J. Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams. Chem Mater. 2015, 27, 6784–6790. [Google Scholar] [CrossRef]
- Luo, F.B.; Wu, K.; Li, Y.W.; Zheng, J.; Guo, H.L.; Lu, M.G. Reactive flame retardant with core-shell structure and its flame retardancy in rigid polyurethane foam. J. Appl. Polym. Sci. 2015, 132, 42800. [Google Scholar] [CrossRef]
- Hu, X.M.; Wang, D.M. Enhanced fire behavior of rigid polyurethane foam by intumescent flame retardants. J. Appl. Polym. Sci. 2013, 129, 238–246. [Google Scholar] [CrossRef]
- La Guardia, M.J.; Hale, R.C. Halogenated flame-retardant concentrations in settled dust, respirable and inhalable particulates and polyurethane foam at gymnastic training facilities and residences. Environ. Int. 2015, 79, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, C.K.; Kwon, Y. Ablation and fire-retardant properties of hydroxyl-terminated polybutadiene-based polyurethane-g-polyhedral oligomeric silsesquioxane composites. High Perform. Polym. 2015, 27, 749–757. [Google Scholar] [CrossRef]
- Lorenzetti, A.; Modesti, M.; Besco, S.; Hrelja, D.; Donadi, S. Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym. Degrad. Stab. 2011, 96, 1455–1461. [Google Scholar] [CrossRef]
- Chen, K.P.; Cao, F.; Liang, S.E.; Wang, J.H.; Tian, C.R. Preparation of poly(ethylene oxide) brush-grafted multiwall carbon nanotubes and their effect on morphology and mechanical properties of rigid polyurethane foam. Polym. Int. 2018, 67, 1545–1554. [Google Scholar] [CrossRef]
- Konig, A.; Malek, A.; Fehrenbacher, U.; Brunklaus, G.; Wilhelm, M.; Hirth, T. Silane-functionalized flame-retardant aluminum trihydroxide in flexible polyurethane foam. J. Cell. Plast. 2010, 46, 395–413. [Google Scholar] [CrossRef]
- Thirumal, M.; Singha, N.K.; Khastgir, D.; Manjunath, B.S.; Naik, Y.P. Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. J. Appl. Polym. Sci. 2010, 116, 2260–2268. [Google Scholar] [CrossRef]
- Kotal, M.; Srivastava, S.K.; Bhowmick, A.K. Thermoplastic polyurethane and nitrile butadiene rubber blends with layered double hydroxide nanocomposites by solution blending. Polym. Int. 2010, 59, 2–10. [Google Scholar] [CrossRef]
- Cheng, J.J.; Shi, B.B.; Zhou, F.B.; Chen, X.Y. Effects of inorganic fillers on the flame-retardant and mechanical properties of rigid polyurethane foams. J. Appl. Polym. Sci. 2014, 131, 40253. [Google Scholar] [CrossRef]
- Xi, W.; Qian, L.J.; Chen, Y.J.; Xu, B. Addition flame-retardant behaviors of expandable graphite and [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polym. Degrad. Stab. 2015, 122, 36–43. [Google Scholar] [CrossRef]
- Heinen, M.; Gerbase, A.E.; Petzhold, C.L. Vegetable oil-based rigid polyurethanes and phosphorylated flame-retardants derived from epoxydized soybean oil. Polym. Degrad. Stab. 2014, 108, 76–86. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Ramos, M.J.; Klein, R.; De Lucas, A.; Rodriguez, J.F. Thermal degradation and fire behaviour of novel polyurethanes based on phosphate polyols. Polym. Degrad. Stab. 2014, 101, 40–51. [Google Scholar] [CrossRef]
- Xi, W.; Qian, L.J.; Huang, Z.G.; Cao, Y.F.; Li, L.J. Continuous flame-retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams. Polym. Degrad. Stab. 2016, 130, 97–102. [Google Scholar] [CrossRef]
Samples | FR Ratio (%) | ATH (g) | AO (g) | BH (g) | EG (g) | 450L (g) |
---|---|---|---|---|---|---|
Neat RPUF | 0% | -- | -- | -- | -- | 72.0 |
8ATH/14B/6E/PU | 8%ATH/14%BH/6%EG | 19.1 | -- | 33.5 | 14.3 | 43.0 |
14ATH/14B/6E/PU | 14%ATH/14%BH/6%EG | 35.5 | -- | 35.5 | 15.5 | 43.0 |
8AO/14B/6E/PU | 8%ATH/14%BH/6%EG | -- | 19.1 | 33.5 | 14.3 | 43.0 |
14AO/14B/6E/PU | 14%ATH/14%BH/6%EG | -- | 35.5 | 35.5 | 15.5 | 43.0 |
19.6B/8.4E/PU | BH:EG 14:6 | -- | -- | 46.3 | 20.1 | 43.0 |
28ATH/PU | 28%ATH | 78.0 | -- | -- | -- | 72.0 |
28AO/PU | 28%AO | -- | 78.0 | -- | -- | 72.0 |
Samples | LOI (%) | PHRR (kW/m2) | av-EHC (MJ/kg) | THR (MJ/m2) | TSR (m2/m2) | av-COY (kg/kg) | av-CO2Y (kg/kg) |
---|---|---|---|---|---|---|---|
Neat RPUF | 19.4 | 322 ± 8 | 20.8 ± 1.0 | 27.1 ± 0.8 | 899 ± 22 | 0.24 ± 0.04 | 2.52 ± 0.23 |
8ATH/14B/6E/PU | 31.2 | 120 ± 2 | 18.5 ± 0.0 | 19.4 ± 0.3 | 625 ± 19 | 0.20 ± 0.02 | 2.20 ± 0.14 |
14ATH/14B/6E/PU | 34.0 | 117 ± 2 | 18.8 ± 0.8 | 20.1 ± 0.1 | 496 ± 16 | 0.21 ± 0.05 | 2.31 ± 0.04 |
8AO/14B/6E/PU | 30.6 | 129 ± 2 | 17.1 ± 0.7 | 21.7 ± 0.4 | 709 ± 17 | 0.21 ± 0.03 | 1.95 ± 0.30 |
14AO/14B/6E/PU | 30.7 | 129 ± 2 | 17.3 ± 0.4 | 21.1 ± 0.7 | 707 ± 28 | 0.28 ± 0.00 | 2.48 ± 0.02 |
19.6B/8.4E/PU | 31.0 | 132 ± 5 | 18.2 ± 0.4 | 20.9 ± 0.7 | 744 ± 21 | 0.22 ± 0.01 | 2.36 ± 0.01 |
28ATH/PU | 22.3 | 285 ± 15 | 21.0 ± 0.1 | 35.5 ± 0.3 | 1165 ± 34 | 0.19 ± 0.03 | 2.32 ± 0.50 |
28AO/PU | 24.5 | 215 ± 10 | 18.5 ± 0.8 | 32.4 ± 0.5 | 1091 ± 47 | 0.18 ± 0.01 | 2.64 ± 0.07 |
Samples | C (%) | N (%) | O (%) | P (%) | Al (%) |
---|---|---|---|---|---|
14ATH/14B/6E/PU | 55.33 | 3.69 | 26.18 | 9.37 | 5.41 |
14AO/14B/6E/PU | 66.21 | 5.64 | 17.45 | 5.62 | 5.34 |
19.6B/8.4E/PU | 81.86 | 6.31 | 8.84 | 2.28 | 0 |
Samples | Apparent Density (kg/m3) | Compression Strength (MPa) |
---|---|---|
Neat RPUF | 35.2 | 0.20 |
8ATH/14B/6E/PU | 47.4 | 0.19 |
14ATH/14B/6E/PU | 55.5 | 0.18 |
8AO/14B/6E/PU | 51.8 | 0.24 |
14AO/14B/6E/PU | 54.8 | 0.27 |
19.6B/8.4E/PU | 49.6 | 0.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, W.; Qian, L.; Li, L. Flame Retardant Behavior of Ternary Synergistic Systems in Rigid Polyurethane Foams. Polymers 2019, 11, 207. https://doi.org/10.3390/polym11020207
Xi W, Qian L, Li L. Flame Retardant Behavior of Ternary Synergistic Systems in Rigid Polyurethane Foams. Polymers. 2019; 11(2):207. https://doi.org/10.3390/polym11020207
Chicago/Turabian StyleXi, Wang, Lijun Qian, and Linjie Li. 2019. "Flame Retardant Behavior of Ternary Synergistic Systems in Rigid Polyurethane Foams" Polymers 11, no. 2: 207. https://doi.org/10.3390/polym11020207
APA StyleXi, W., Qian, L., & Li, L. (2019). Flame Retardant Behavior of Ternary Synergistic Systems in Rigid Polyurethane Foams. Polymers, 11(2), 207. https://doi.org/10.3390/polym11020207