Solvent Effect on the Self-Assembly of a Thin Film Consisting of Y-Shaped Copolymer
Abstract
:1. Introduction
2. Models and Parameter Settings
3. Results and Discussion
3.1. Self-Assembled Structure in the Single Solvent
3.2. Self-Assembled Structure in the Binary Solvent
3.3. Self-Assembled Structure Under the Confinement
3.4. Self-Assembled Structure Under Confinement Doped with a Single Solvent
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reiter, G.; Al Akhrass, S.; Hamieh, M.; Damman, P.; Gabriele, S.; Vilmin, T.; Raphaël, E. Dewetting as an investigative tool for studying properties of thin polymer films. Eur. Phys. J. Spec. Top. 2009, 166, 165–172. [Google Scholar] [CrossRef]
- Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014, 39, 510–554. [Google Scholar] [CrossRef] [Green Version]
- Morishima, Y.; Nomura, S.; Ikeda, T.; Seki, M.; Kamachi, M. Characterization of unimolecular micelles of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylamides bearing bulky hydrophobic substituents. Macromolecules 1995, 28, 2874–2881. [Google Scholar] [CrossRef]
- Rösler, A.; Vandermeulen, G.W.M.; Klok, H.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 2012, 64, 270–279. [Google Scholar] [CrossRef]
- Kylian, O.; Shelemin, A.; Solar, P.; Choukourov, A.; Hanus, J.; Vaidulych, M.; Kuzminova, A.; Biederman, H. Plasma polymers: From thin films to nanocolumnar coatings. Thin Solid Films 2017, 630, 86–91. [Google Scholar] [CrossRef]
- Bormashenko, E.; Pogreb, R.; Stanevsky, O.; Bormashenko, Y.; Tamir, S.; Cohen, R.; Nunberg, M.; Gaisin, V.-Z.; Gorelik, M.; Gendelman, O.V. Mesoscopic and submicroscopic patterning in thin polymer films: Impact of the solvent. Mater. Lett. 2005, 59, 2461–2464. [Google Scholar] [CrossRef]
- Cohen, E.; Weissman, H.; Pinkas, I.; Shimoni, E.; Rehak, P.; Král, P.; Rybtchinski, B. Controlled self-assembly of photofunctional supramolecular nanotubes. ACS Nano 2018, 12, 317–326. [Google Scholar] [CrossRef]
- Dwivedi, S.; Mukherjee, V.R.; Atta, A. Formation and control of secondary nanostructures in electro-hydrodynamic patterning of ultra-thin films. Thin Solid Films 2017, 642, 241–251. [Google Scholar] [CrossRef]
- Bernardin, G.A.; Davies, N.A.; Finlayson, C.E. Spray-coating deposition techniques for polymeric semiconductor blends. Mater. Sci. Semicond. Proc. 2017, 71, 174–180. [Google Scholar] [CrossRef]
- Credi, C.; Pintossi, D.; Bianchi, C.L.; Levi, M.; Griffini, G.; Turri, S. Combining stereolithography and replica molding: On the way to superhydrophobic polymeric devices for photovoltaics. Mater. Des. 2017, 133, 143–153. [Google Scholar] [CrossRef]
- Chopra, A.M.; Mehta, M.; Bismuth, J.; Shapiro, M.; Fishbein, M.C.; Bridges, A.G.; Vinters, H.V. Polymer coating embolism from intravascular medical devices—A clinical literature review. Cardiovasc. Pathol. 2017, 30, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Crossland, E.J.W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D.-M.; Toombes, G.E.S.; Hillmyer, M.A.; Ludwigs, S.; Steiner, U.; et al. A bicontinuous double gyroid hybrid solar cell. Nano Lett. 2009, 9, 2807–2812. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Wang, J.Y.; Kim, B.; Xu, J.; Russell, T.P. A simple route to highly oriented and ordered nanoporous block copolymer templates. ACS Nano 2008, 2, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Yoon, J.; Oh, W.; Hwang, Y.; Heo, K.; Jin, K.S.; Kim, J.; Kim, K.W.; Ree, M. In-situ grazing incidence small-angle X-ray scattering studies on nanopore evolution in low-k organosilicate dielectric thin films. Macromolecules 2005, 38, 3395–3405. [Google Scholar] [CrossRef]
- Sidorenko, A.; Tokarev, I.; Minko, S.; Stamm, M. Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. J. Am. Chem. Soc. 2003, 125, 12211–12216. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, D.H.; Xu, J.; Kim, B.; Hong, S.W.; Jeong, U.; Xu, T.; Russell, T.P. Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order. Science 2009, 323, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Gersappe, D.; Fasolka, M.; Israels, R.; Balazs, A.C. Modeling the behavior of random copolymer brushes. Macromolecules 1995, 28, 4753–4755. [Google Scholar] [CrossRef]
- Zhulina, E.B.; Singh, C.; Balazs, A.C. Forming patterned films with tethered diblock copolymers. Macromolecules 1996, 29, 6338–6348. [Google Scholar] [CrossRef]
- Ferreira, P.G.; Leibler, L. Copolymer brushes. J. Chem. Phys. 1996, 105, 9362–9370. [Google Scholar] [CrossRef]
- Brown, G.; Chakrabarti, A.; Marko, J.F. Layering phase separation of densely grafted diblock copolymers. Macromolecules 1996, 28, 7817–7821. [Google Scholar] [CrossRef]
- Wang, J.; Müller, M. Microphase separation of diblock copolymer brushes in selective solvents: Single-chain-in-Mean-Field simulations and integral geometry analysis. Macromolecules 2009, 42, 2251–2264. [Google Scholar] [CrossRef]
- Akgun, B.; Ugur, G.; Brittain, W.J.; Majkrzak, C.F.; Li, X.; Wang, J.; Li, H.; Wu, D.T.; Wang, Q.; Foster, M.D. Internal structure of ultrathin diblock copolymer brushes. Macromolecules 2009, 42, 8411–8422. [Google Scholar] [CrossRef]
- Guskova, O.A.; Seidel, C. Mesoscopic simulations of morphological transitions of stimuli-responsive diblock copolymer brushes. Macromolecules 2011, 44, 671–682. [Google Scholar] [CrossRef]
- Rudov, A.A.; Khalatur, P.G.; Potemkin, I.I. Perpendicular domain orientation in dense planar brushes of diblock copolymers. Macromolecules 2012, 45, 4870–4875. [Google Scholar] [CrossRef]
- Tobis, J.; Boch, L.; Thomann, Y.; Tiller, J.C. Amphiphilic polymer conetworks as chiral separation membranes. J. Membr. Sci. 2011, 372, 219–227. [Google Scholar] [CrossRef]
- Lin, C.; Gitsov, I. Preparation and characterization of novel amphiphilic hydrogels with covalently attached drugs and fluorescent markers. Macromolecules 2010, 43, 10017–10030. [Google Scholar] [CrossRef]
- Gudipati, C.S.; Greenlief, C.M.; Johnson, J.A.; Prayongpan, P.; Wooley, K.L. Hyperbranched fluoropolymer and linear poly(ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: An insight into the surface compositions, topographies, and morphologies. J. Polym. Sci. Pol. Chem. 2004, 42, 6193–6208. [Google Scholar] [CrossRef]
- Hanko, M.; Bruns, N.; Rentmeister, S.; Tiller, J.C.; Heinze, J. Nanophase-separated amphiphilic conetworks as versatile matrixes for optical chemical and biochemical sensors. Anal. Chem. 2006, 78, 6376–6383. [Google Scholar] [CrossRef]
- Savin, G.; Bruns, N.; Thomann, Y.; Tiller, J.C. Nanophase separated amphiphilic microbeads. Macromolecules 2005, 38, 7536–7539. [Google Scholar] [CrossRef]
- Bodycomb, J.; Funaki, Y.; Kimishima, K.; Hashimoto, T. Single-grain lamellar microdomain from a diblock copolymer. Macromolecules 1999, 32, 2075–2077. [Google Scholar] [CrossRef]
- Morkved, T.L.; Lu, M.; Urbas, A.M.; Ehrichs, E.E.; Jaeger, H.M.; Mansky, P.; Russell, T.P. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 1996, 273, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Matsen, M.W. Stability of a block-copolymer lamella in a strong electric field. Phys. Rev. Lett. 2005, 95, 258302. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Park, W.I.; Kim, M.-J.; Ross, C.A.; Jung, Y.S. Highly tunable self-assembled nanostructures from a poly(2-vinylpyridine-b-dimethylsiloxane) block copolymer. Nano Lett. 2011, 11, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Li, J.Q.; Wang, S. Modeling and analysis of the compatibility of poly(ethylene oxide)/poly(methyl methacrylate) blends with surface and shear inducing effects. J. Appl. Polym. Sci. 2011, 122, 64–75. [Google Scholar] [CrossRef]
- Mu, D.; Li, J.Q.; Zhou, Y.H. Modeling and analysis of the compatibility of polystyrene/poly(methyl methacrylate) blends with four inducing effects. J. Mol. Model. 2011, 17, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Li, J.Q.; Wang, S. Mesoscopic simulation of the surface inducing effects on the compatibility of PS-b-PMMA copolymers. J. Appl. Polym. Sci. 2012, 124, 879–889. [Google Scholar] [CrossRef]
- Kim, S.; Shin, D.O.; Choi, D.-G.; Jeong, J.-R.; Mun, J.H.; Yang, Y.-B.; Kim, J.U.; Kim, S.O.; Jeong, J.-H. Graphoepitaxy of block-copolymer self-assembly integrated with single-step ZnO nanoimprinting. Small 2012, 8, 1563–1569. [Google Scholar] [CrossRef]
- Rockford, L.; Liu, Y.; Mansky, P.; Russell, T.P.; Yoon, M.; Mochrie, S.G.J. Polymers on nanoperiodic, heterogeneous surfaces. Phys. Rev. Lett. 1999, 82, 2602–2605. [Google Scholar] [CrossRef]
- Tavakkoli, A.; Gotrik, K.G.K.W.; Hannon, A.F.; Alexander-Katz, A.; Ross, C.A.; Berggren, K.K. Templating three-dimensional self-Assembled structures in bilayer block copolymer films. Science 2012, 336, 1294–1298. [Google Scholar] [CrossRef]
- Yang, X.M.; Peters, R.D.; Nealey, P.F.; Solak, H.H.; Cerrina, F. Guided self-assembly of symmetric diblock copolymer films on chemically nanopatterned substrates. Macromolecules 2000, 33, 9575–9582. [Google Scholar] [CrossRef]
- Park, S.M.; Craig, G.S.W.; La, Y.H.; Solak, H.H.; Nealey, P.F. Square arrays of vertical cylinders of PS-b-PMMA on chemically nanopatterned surfaces. Macromolecules 2007, 40, 5084–5094. [Google Scholar] [CrossRef]
- Stoykovich, M.P.; Müller, M.; Kim, S.O.; Solak, H.H.; Edwards, E.W.; de Pablo, J.J.; Nealey, P.F. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 2005, 308, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.O.; Solak, H.H.; Stoykovich, M.P.; Ferrier, N.J.; de Pablo, J.J.; Nealey, P.F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 2003, 424, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.; Kang, H.; Detcheverry, F.A.; Dobisz, E.; Kercher, D.S.; Albrecht, T.R.; de Pablo, J.J.; Nealey, P.F. Density multiplication and improved lithography by directed block copolymer assembly. Science 2008, 321, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.Y.; Rettner, C.T.; Sanders, D.P.; Kim, H.-C.; Hinsberg, W.D. Dense self-assembly on sparse chemical patterns: Rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 2008, 20, 3155–3158. [Google Scholar] [CrossRef]
- Tada, Y.; Akasaka, S.; Yoshida, H.; Hasegawa, H.; Dobisz, E.; Kercher, D.; Takenaka, M. Directed self-assembly of diblock copolymer thin films on chemically-patterned substrates for defect-free nano-patterning. Macromolecules 2008, 41, 9267–9276. [Google Scholar] [CrossRef]
- Chen, P.; Liang, H.; Xia, R.; Qian, J.; Feng, X. Directed self-assembly of block copolymers on sparsely nanopatterned substrates. Macromolecules 2013, 46, 922–926. [Google Scholar] [CrossRef]
- Mu, D.; Li, J.Q.; Wang, S. Changes in the phase morphology of miktoarm PS-b-PMMA copolymer induced by a monolayer surface. Colloid Polym. Sci. 2015, 293, 2831–2844. [Google Scholar] [CrossRef]
- Mu, D.; Li, J.Q.; Feng, S.Y. One-dimensional confinement effect on the self-assembly of symmetric H-shaped copolymers in a thin film. Sci. Rep. 2017, 7, 13610. [Google Scholar] [CrossRef]
- Yin, Y.; Jiang, R.; Li, B.; Jin, Q.; Ding, D.; Shi, A.-C. Self-assembly of grafted Y-shaped ABC triblock copolymers in solutions. J. Chem. Phys. 2008, 129, 154903. [Google Scholar] [CrossRef]
- Sun, J.; Chen, X.; Guo, J.; Shi, Q.; Xie, Z.; Jing, X. Synthesis and self-assembly of a novel Y-shaped copolymer with a helical polypeptide arm. Polymer 2009, 50, 455–461. [Google Scholar] [CrossRef]
- Dong, R.; Zhong, Z.; Hao, J. Self-assembly of onion-like vesicles induced by charge and rheological properties in anionic-nonionic surfactant solutions. Soft Matter 2012, 8, 7812–7821. [Google Scholar] [CrossRef]
- Mu, D.; Li, J.Q.; Feng, S.Y. Mesoscale simulation of the formation and dynamics of lipid-structured poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers. Phys. Chem. Chem. Phys. 2015, 17, 12492–12499. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Li, J.Q.; Feng, S.Y. Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film. Phys. Chem. Chem. Phys. 2017, 19, 31011–31023. [Google Scholar] [PubMed]
- Fraaije, J.G.E.M.; van Vlimmeren, B.A.C.; Maurits, N.M.; Postma, M.; Evers, O.A.; Hoffmann, C.; Altevogt, P.; Goldbeck-Wood, G. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J. Chem. Phys. 1997, 106, 4260–4269. [Google Scholar] [CrossRef]
- van Vlimmeren, B.A.C.; Maurits, N.M.; Zvelindovsky, A.V.; Sevink, G.J.A.; Fraaije, J.G.E.M. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13(propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. Application of dynamic mean-field density functional theory. Macromolecules 1999, 32, 646–656. [Google Scholar]
- Crank, J.; Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Math. Proc. Camb. Philos. Soc. 1947, 43, 50–67. [Google Scholar] [CrossRef]
- Mu, D.; Huang, X.R.; Lu, Z.Y.; Sun, C.C. Computer simulation study on the compatibility of poly(ethylene oxide)/poly(methyl methacrylate) blends. Chem. Phys. 2008, 348, 122–129. [Google Scholar] [CrossRef]
- Grulke, E.A. Solubility Parameter Values in Polymer Handbook, 4th ed.; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Zhu, J.; Jiang, W. Self-assembly of ABC triblock copolymer into giant segmented wormlike micelles in dilute solution. Macromolecules 2005, 38, 9315–9323. [Google Scholar] [CrossRef]
- Li, Z.; Kesselman, E.; Talmon, Y.; Hillmyer, M.A.; Lodge, T.P. Multicompartment micelles from ABC miktoarm stars in water. Science 2004, 306, 98–101. [Google Scholar] [CrossRef]
- Mu, D.; Li, J.Q.; Feng, S.Y. Mechanistic investigations of confinement effects on the self-assembly of symmetric amphiphilic copolymers in thin films. Phys. Chem. Chem. Phys. 2017, 19, 21938–21945. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Li, J.Q.; Feng, S.Y. Morphology of lipid-like structured weak polyelectrolyte poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers induced by confinements. Soft Matter 2015, 11, 4356–4365. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Li, J.Q.; Feng, S.Y. Mesoscopic simulation of the self-assembly of the weak polyelectrolyte poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers. Soft Matter 2015, 11, 4366–4374. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yan, Q.; Nealey, P.F.; de Pablo, J.J. Monte Carlo simulations of diblock copolymer thin films confined between two homogeneous surfaces. J. Chem. Phys. 2000, 112, 450–464. [Google Scholar] [CrossRef] [Green Version]
- Dobriyal, P.; Xiang, H.; Kazuyuki, M.; Chen, J.T.; Jinnai, H.; Russell, T.P. Cylindrically confined diblock copolymers. Macromolecules 2009, 42, 9082–9088. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Berger, A.; Yau, E.; He, C.; Zhang, L.; Gösele, U.; Knez, M.; Steinhart, M. Nanoscopic morphologies in block copolymer nanorods as templates for atomic-layer deposition of semiconductors. Adv. Mater. 2009, 21, 2763–2766. [Google Scholar] [CrossRef]
- Rider, D.A.; Chen, J.I.L.; Eloi, J.C.; Arsenault, A.C.; Russell, T.P.; Ozin, G.A.; Manners, I. Controlling the morphologies of organometallic block copolymers in the 3-dimensional spatial confinement of colloidal and inverse colloidal crystals. Macromolecules 2008, 41, 2250–2259. [Google Scholar] [CrossRef]
- Chen, P.; Liang, H.; Shi, A.C. Microstructures of a cylinder-forming diblock copolymer under spherical confinement. Macromolecules 2008, 41, 8938–8943. [Google Scholar] [CrossRef]
- Li, S.; Chen, P.; Zhang, L.; Liang, H. Geometric frustration phases of diblock copolymers in nanoparticles. Langmuir 2011, 27, 5081–5089. [Google Scholar] [CrossRef]
- Sen, M.; Jiang, N.; Endoh, M.K.; Koga, T.; Ribbe, A.; Rahman, A.; Kawaguchi, D.; Tanaka, K.; Smilgies, D.-M. Locally favored two-dimensional structures of block copolymer melts on nonneutral surfaces. Macromolecules 2018, 51, 520–528. [Google Scholar] [CrossRef]
Eij (kJ·mol−1) | A | B | Hydrophilic Solvent | Hydrophobic Solvent |
---|---|---|---|---|
A | 0 | 4.68 | 1.0 | 5.0 |
B | 4.68 | 0 | 5.0 | 3.0 |
hydrophilic solvent | 1.0 | 5.0 | 0 | 6.0 |
hydrophobic solvent | 5.0 | 3.0 | 6.0 | 0 |
System | Average Value | Standard Deviation |
---|---|---|
(a) plain copolymer | 1.044 | 0.022 |
(b) copolymer doped with 10% hydrophobic solvent | 0.864 | 0.080 |
(c) copolymer doped with 10% hydrophilic solvent | 0.958 | 0.039 |
Index | Average Position of Cores on the Z-axis (nm) | Standard Deviation |
---|---|---|
row 1 | 1.679 | 0.064 |
row 2 | 8.336 | 0.436 |
row 3 | 16.188 | 0.612 |
row 4 | 23.889 | 0.387 |
row 5 | 30.372 | 0.062 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, D.; Li, J.-Q.; Cong, X.-S.; Mi, Y.-W.; Zhang, H. Solvent Effect on the Self-Assembly of a Thin Film Consisting of Y-Shaped Copolymer. Polymers 2019, 11, 261. https://doi.org/10.3390/polym11020261
Mu D, Li J-Q, Cong X-S, Mi Y-W, Zhang H. Solvent Effect on the Self-Assembly of a Thin Film Consisting of Y-Shaped Copolymer. Polymers. 2019; 11(2):261. https://doi.org/10.3390/polym11020261
Chicago/Turabian StyleMu, Dan, Jian-Quan Li, Xing-Shun Cong, Yu-Wei Mi, and Han Zhang. 2019. "Solvent Effect on the Self-Assembly of a Thin Film Consisting of Y-Shaped Copolymer" Polymers 11, no. 2: 261. https://doi.org/10.3390/polym11020261
APA StyleMu, D., Li, J. -Q., Cong, X. -S., Mi, Y. -W., & Zhang, H. (2019). Solvent Effect on the Self-Assembly of a Thin Film Consisting of Y-Shaped Copolymer. Polymers, 11(2), 261. https://doi.org/10.3390/polym11020261