Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Considerations
2.2. Solar Cell Modeling
3. Results
3.1. Results for Multi-Junction Polymer Solar Cells
3.1.1. Type 1: Multi-Junction Polymer Solar Cell
3.1.2. Type 2: Multi-Junction Polymer Solar Cell
3.1.3. Type 3: Multi-Junction Polymer Solar Cell
3.2. Results for Two-, Three- and Four-Junction Hybrid Solar Cell
3.2.1. Two-Junction Hybrid Solar Cell
3.2.2. Three-Junction Hybrid Solar Cell
3.2.3. Four-Junction Hybrid Solar Cell
4. Discussions
4.1. Result Analysis for Three Types of Multi-Junction PSC and HSC
4.2. Brief Fabrication Methodology for Multi-Junction Solar Cell
4.3. Stability Analysis of PSC and HSC
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brabec, C.; Scherf, U.; Dyakonov, Y. Organic Photovoltaics: Materials, Device Physics and Manufacturing Technologies, 2nd ed.; Wiley-VCH: Hoboken, NJ, USA, 2014. [Google Scholar]
- Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Shah, A. Thin-film Silicon Solar Cells; EPFL Press: Lausanne, Switzerland, 2010. [Google Scholar]
- Choy, W.C.H.; Member, S.; Ren, X. Plasmon-Electrical Effects on Organic Solar Cells by Incorporation of Metal Nanostructures. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 1–9. [Google Scholar] [CrossRef]
- Raffaelle, R.P.; Anctil, A.; DiLeo, R.; Merrill, A.; Petrichenko, O.; Landi, B.J. Dye-sensitized bulk heterojunction polymer solar cells. In Proceedings of the 3rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 3–8. [Google Scholar]
- Wang, K.; Liu, C.; Meng, T.; Yi, C.; Gong, X. Inverted Organic Photovoltaic Cells. Chem. Soc. Rev. 2016, 45, 2937–2975. [Google Scholar] [CrossRef]
- Karim, N.; Mime, F.I.; Islam, M.R.; Mehedi, I.M. Performance analysis of P3HT: PCBM based organic solar cell. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 826–830. [Google Scholar]
- Benaissa, O.M.; Hadjeri, S.; Zidi, S.A.; Benaissa, O.M. Modeling and Simulation of Grid Connected PV Generation System Using Matlab/Simulink. Int. J. Power Electron. Drive Syst. 2017, 8, 392–401. [Google Scholar]
- Islam, M.S. Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method. Org. Electron. 2017, 41, 143–156. [Google Scholar] [CrossRef]
- Swapna, P.; Rao, Y.S. Modeling and simulation of organic solar cell using transfer matrix method. In Proceedings of the International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), Kottayam, India, 22–23 March 2013; pp. 196–199. [Google Scholar]
- Wei, F.; Yao, L.; Lan, F.; Li, G.; Liu, L. Tandem polymer solar cells: Simulation and optimization through a multiscale scheme. Beilstein J. Nanotechnol. 2017, 8, 123–133. [Google Scholar] [CrossRef]
- Gagliardi, A.; Wang, S.; Albes, T. Simulation of charge Carrier mobility unbalance in organic solar cells. Org. Electron. Phys. Mater. Appl. 2018, 59, 171–176. [Google Scholar] [CrossRef]
- Sigma-Aldrich Corp, Chemical Product Data Base. Available online: http://www.sigmaaldrich.com/catalog/product/aldrich (accessed on 20 February 2019).
- Abada, Z. Optical optimization of organic solar cells based on P3HT: PCBM interpenetrating blend. In Proceedings of the 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 October 2017; pp. 3–8. [Google Scholar]
- Roman, L.S.; Inganas, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487–496. [Google Scholar]
- Yeboah, D.; Singh, J. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells. Electronics 2017, 64, 75. [Google Scholar] [CrossRef]
- El Alamy, A.; Amine, A.; Hamidi, M.; Bouachrine, M. Conjugated molecules consisting of thienylenevinylene-co-cyanophenylene as donor materials for bulk heterojunction solar cells. J. Mater. Environ. Sci. 2018, 9, 918–927. [Google Scholar]
- Yoon, W.; Boercker, J.E.; Lumb, M.P.; Placencia, D.; Foos, E.E.; Tischler, J.G. Enhanced Open-Circuit Voltage of PbS Nanocrystal Quantum Dot Solar Cells. Sci. Rep. 2013, 3, 2225. [Google Scholar] [CrossRef]
- Pettersson, L.A.A.; Roman, L.S.; Inganas, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487. [Google Scholar] [CrossRef]
- Peumans, P.; Yakimov, A.; Forrest, S. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 2003, 93, 3693. [Google Scholar] [CrossRef]
- Burkhard, G.F.; Hoke, E.T. Transfer Matrix Optical Modeling. McGehee Group (Stanford Univ). 2011. Available online: http://web.stanford.edu/group/mcgehee (accessed on 20 February 2019).
- Polyanskiy, M.N. Refractive Index Database. Available online: https://refractiveindex.info (accessed on 20 February 2019).
- Ioffe Physico-Technical Institute, n and k Data Base. Available online: http://www.ioffe.ru/SVA/NSM/nk/ (accessed on 20 February 2019).
- Bora, B. Contemporary Research in Organic Solar Cell. Renew. Energy 2013, 6, 28–30. Available online: https://mnre.gov.in/file-manager/akshay-urja/january-february-2013/EN/28-30.pdf (accessed on 20 February 2019).
Symbol | Name; Description |
---|---|
SiO2 | Silicon dioxide, glass |
ITO | Indium tin oxide; electrode that collects hole/anode |
PEDOT: PSS | Poly polystyrene sulfonate; HTL |
P3HT | Poly(3-hexylthiophene-2,5-diyl), electron donor |
ICBA | Indene-C60 bisadduct, electron acceptor |
TiO2 | Titanium (IV) oxide, ETL |
PTB7-Th | Poly([2,6′-4,8-di(5-ethylhexylthienyl) benzo[1,2-b;3,3-b] dithiophene] {3-fluoro-2[(2-ethylhexyl) carbonyl] thieno[3,4-b] thiophenediyl}), electron donor |
PCBM | [6,6]-phenyl-C71-butyric acid methyl ester, electron acceptor |
PDTP-DFBT | Poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d] pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole); electron donor |
Al | Aluminum; electrode that collects electron/cathode |
PMDPP3T | Poly[[2,5-bis(2-hexyldecyl-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c] pyrrole-1,4-diyl]-alt- [3′,3″-dimethyl-2,2′:5′,2″-terthiophene]-5,5″-diyl]; electron donor |
Si-PCPDTBT | Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-silolo [3,2-b:4,5-b′] dithiophene-2,6-diyl]]; electron donor |
MaPbI3 | Methylammonium lead iodide; semiconducting organic–inorganic material |
PbS | Lead (II) sulphide; semiconducting inorganic material |
ZnO | Zinc oxide; ETL |
Ag | Silver; electrode that collects electron/cathode |
NiO | Nickel (II) oxide; HTL |
MATERIAL | LUMO (eV) | HOMO (eV) |
---|---|---|
PTB7-Th(donor) | −3.61 | −5.25 |
PCBM (acceptor) | −3.9 | −5.9 |
PMDPP3T(donor) | −3.6 | −5.2 |
P3HT (donor) | −3.1 | −5 |
PCPDTBT (donor) | −3.55 | −5.3 |
MAPbI3 | −3.93 | −5.46 |
ICBA (acceptor) | −3.74 | −5.6 |
Si-PCPDTBT (donor) | −3.55 | −5.3 |
PDTP-DFBT (donor) | −3.64 | −5.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanam, J.J.; Foo, S.Y. Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light. Polymers 2019, 11, 383. https://doi.org/10.3390/polym11020383
Khanam JJ, Foo SY. Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light. Polymers. 2019; 11(2):383. https://doi.org/10.3390/polym11020383
Chicago/Turabian StyleKhanam, Jobeda J., and Simon Y. Foo. 2019. "Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light" Polymers 11, no. 2: 383. https://doi.org/10.3390/polym11020383
APA StyleKhanam, J. J., & Foo, S. Y. (2019). Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light. Polymers, 11(2), 383. https://doi.org/10.3390/polym11020383