Characterization of Microchannel Replicability of Injection Molded Electrophoresis Microfluidic Chips
Abstract
:1. Introduction
2. Experiments
2.1. The Dimension of the Microfluidic Chips
2.2. Experimental Materials and Molding Equipment
2.3. Injection Molding Experimental Design
2.4. The Evaluation of Microchannel Replicability
2.5. Protein Electrophoresis Experiment
3. Results and Discussion
3.1. Determination of Microchannel Replication
3.2. Influence of Process Parameters on Microchannel Replication
3.2.1. The Effect of Mold Temperature on Microchannel Replication
3.2.2. Effect of Melt Temperature on Microchannel Replicability
3.2.3. Effect of Holding Pressure on Microchannel Replicability
3.2.4. Effect of Holding Time on Microchannel Replicability
3.2.5. Effect of Injection Rate on Microchannel Replicability
3.3. Protein Electrophoresis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef]
- Elvira, K.S.; Solvas, X.C.; Wootton, R.C.; deMello, A.J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Bai, Y.; Cheng, Z.; Liu, F.; Wang, P.; Yang, D.; Li, G.; Jin, Q.; Mao, H.; Zhao, J. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR. Biosens. Bioelectron. 2017, 96, 339–344. [Google Scholar] [CrossRef]
- Manz, A.; Graber, N.; Widmer, H.M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensor Actuat. B Chem. 1990, 1, 244–248. [Google Scholar] [CrossRef]
- Harrison, D.J.; Fan, Z.; Seiler, K.; Manz, A.; Widmer, H.M. Rapid separation of fluorescein derivatives using a micromachined capillary eletrophoresis system. Anal. Chim. Acta. 1993, 283, 361–366. [Google Scholar] [CrossRef]
- Han, J.P.; Sun, J.; Wang, L.; Liu, P.; Zhuang, B.; Zhao, L. The optimization of electrophoresis on a glass microfluidic chip and its application in forensic science. J. Forensic Sci. 2017, 62, 1603–1612. [Google Scholar] [CrossRef]
- Cartier, C.A.; Drews, A.M.; Bishop, K.J. Microfluidic mixing of nonpolar liquids by contact charge electrophoresis. Lab Chip 2014, 14, 4230–4236. [Google Scholar] [CrossRef]
- Wu, R.; Wang, Z.; Ying, S.F. Multi-dimension microchip-capillary electrophoresis device for determination of functional proteins in infant milk formula. J. Chromatogr. A 2013, 1304, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Attiya, S.; Jemere, A.B.; Tang, T.; Fitzpatrick, G.; Seiler, K.; Chiem, N. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment. Electrophoresis 2010, 22, 318–327. [Google Scholar] [CrossRef]
- Lu, S.; Dugan, C.E.; Kennedy, R.T. A microfluidic chip with integrated electrophoretic immunoassay for investigating cell-cell interactions. Anal. Chem. 2018, 90, 5171–5178. [Google Scholar] [CrossRef]
- Gutzweiler, L.; Gleichmann, T.; Tanguy, L.; Koltay, P.; Zengerle, R.; Riegger, L. Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale. Electrophoresis 2017, 38, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Pepe, F.; Smeraglio, R.; Vacirca, D.; Malapelle, U.; Barberis, M.; Troncone, G. Microsatellite instability evaluation by automated microfluidic electrophoresis: An update. J. Clin. Pathol. 2017, 70, 90. [Google Scholar] [CrossRef] [PubMed]
- Redman, E.A.; Ramospayan, M.; Mellors, J.S.; Ramsey, J.M. Analysis of hemoglobin glycation using microfluidic ce-ms: A rapid, mass spectrometry compatible method for assessing diabetes management. Anal. Chem. 2016, 88, 5324. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, C.; Li, Z.; Chan, S.D.; Eto, D.; Wu, W. On-chip quantitative-pcr using integrated real-time detection by capillary electrophoresis. Electrophoresis 2016, 37, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Jha, S.K.; Chand, R.; Han, D.; Kim, Y.S. Fast detection of triazine herbicides on a microfluidic chip using capillary electrophoresis pulse amperometric detection. Microelectron. Eng. 2012, 97, 391–395. [Google Scholar] [CrossRef]
- Fiorini, G.S.; Chiu, D.T. Disposable microfluidic devices: Fabrication, function, and application. Biotechniques 2005, 38, 429–446. [Google Scholar] [CrossRef]
- Xie, P.; Hu, L.; He, J.; Kang, W.; Yang, W. Mechanism and solutions of appearance defects on microfluidic chips manufactured by UV-curing assisted injection molding. J. Polym. Eng. 2017, 37, 493–503. [Google Scholar] [CrossRef]
- Lucchetta, G.; Sorgato, M.; Carmignato, S.; Savio, E. Investigating the technological limits of micro-injection molding in replicating high aspect ratio micro-structured surfaces. CIRP Ann. Manuf. Technol. 2014, 63, 521–524. [Google Scholar] [CrossRef]
- Huang, H.; Borhani, N.; Thome, J.R. Experimental investigation on flow boiling pressure drop and heat transfer of R1233zd(E) in a multi-microchannel evaporator. Int. J. Heat Mass Tran. 2016, 98, 596–610. [Google Scholar] [CrossRef]
- Timung, S.; Chaudhuri, J.; Borthakur, M.P.; Mandal, T.K.; Biswas, G.; Bandyopadhyay, D. Electric field mediated spraying of miniaturized droplets inside microchannel. Electrophoresis 2017, 38, 1450–1457. [Google Scholar] [CrossRef]
- Loke, Y.W.; Tor, S.B.; Chun, J.H.; Loh, N.H.; Hardt, D.E. Micro injection-molding of cyclic olefin copolymer using metallic glass insert. Manuf. Syst. Technol. 2007, 372, 35–38. [Google Scholar]
- Utko, P.; Persson, F.; Kristensen, A.; Larsen, N.B. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments. Lab Chip 2011, 11, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K. Microinjection molding of plastic microfluidic chips including circular microchannels. Polym. Eng. Sci. 2014, 54, 42–50. [Google Scholar] [CrossRef]
- Yang, D.; Liu, C.; Xu, Z.; Ji, Z.; Li, D. Effect of micro-injection molding process parameters for various micro-channels. Key Eng. Mater. 2011, 483, 53–57. [Google Scholar] [CrossRef]
- Song, M.; Zhao, H.; Liu, J.; Liu, C.; Li, J. Replication of large scale micro pillar array with different diameters by micro injection molding. Microsyst. Technol. 2016, 23, 1–10. [Google Scholar] [CrossRef]
- Fu, G.; Tor, S.B.; Hardt, D.E.; Loh, N.H. Effects of processing parameters on the micro-channels replication in microfluidic devices fabricated by micro injection molding. Microsyst. Technol. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
Properties | Level |
---|---|
Density (g/cm3) | 1.19 |
Poisson’s Ratio | 0.33 |
Thermal Conductivity (W/(m · K)) | 0.2 |
Specific Heat Capacity (J/(kg · K)) | 1500 |
Coefficient of Thermal Expansion (1/K) | 7 × 10−5 |
Process Parameters | Level 1 | Level 2 | Standard | Level 3 | Level 4 |
---|---|---|---|---|---|
Mold Temperature (°C) | 60 | 70 | 80 | 90 | 100 |
Melt Temperature (°C) | 230 | 240 | 250 | 260 | 270 |
Holding Pressure (MPa) | 80 | 90 | 100 | 110 | 120 |
Holding Time (s) | 1 | 2 | 3 | 4 | 5 |
Injection Rate (cm3/s) | 20 | 25 | 30 | 35 | 40 |
Composition | Level |
---|---|
Deionized water (µL) | 350 |
Acrylamide/bis-acrylamide 30% (µL) | 400 |
Tris-HCl 1.5 M (µL) | 250 |
Ammonium persulfate 10% (µL) | 10 |
Tetramethylethylenediamine (µL) | 0.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Zhu, L.; Min, L.; Li, X.; Zhai, Z.; Drummer, D. Characterization of Microchannel Replicability of Injection Molded Electrophoresis Microfluidic Chips. Polymers 2019, 11, 608. https://doi.org/10.3390/polym11040608
Jiang B, Zhu L, Min L, Li X, Zhai Z, Drummer D. Characterization of Microchannel Replicability of Injection Molded Electrophoresis Microfluidic Chips. Polymers. 2019; 11(4):608. https://doi.org/10.3390/polym11040608
Chicago/Turabian StyleJiang, Bingyan, Laiyu Zhu, Liping Min, Xianglin Li, Zhanyu Zhai, and Dietmar Drummer. 2019. "Characterization of Microchannel Replicability of Injection Molded Electrophoresis Microfluidic Chips" Polymers 11, no. 4: 608. https://doi.org/10.3390/polym11040608
APA StyleJiang, B., Zhu, L., Min, L., Li, X., Zhai, Z., & Drummer, D. (2019). Characterization of Microchannel Replicability of Injection Molded Electrophoresis Microfluidic Chips. Polymers, 11(4), 608. https://doi.org/10.3390/polym11040608