Rheological Study on the Thermoreversible Gelation of Stereo-Controlled Poly(N-Isopropylacrylamide) in an Imidazolium Ionic Liquid
Abstract
:1. Introduction
2. Experiments
2.1. Sample Information
2.2. Rheological Measurements
3. Result and Discussion
3.1. Tacticity Dependence
3.2. Concentration Dependence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Note
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101. [Google Scholar] [CrossRef]
- Liu, F.; Urban, M.W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23. [Google Scholar] [CrossRef]
- Hirokawa, Y.; Tanaka, T. Volume phase transition in a nonionic gel. J. Chem. Phys. 1984, 81, 6379–6380. [Google Scholar] [CrossRef]
- Gil, E.S.; Hudson, S.M. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci. 2004, 29, 1173–1222. [Google Scholar] [CrossRef]
- Keerl, M.; Smirnovas, V.; Winter, R.; Richtering, W. Interplay between hydrogen bonding and macromolecular architecture leading to unusual phase behavior in thermosensitive microgels. Angew. Chem. Int. Ed. 2008, 47, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Lutz, J.-F.; Akdemir, Ö.; Hoth, A. Point by point comparison of two thermosensitive polymers exhibiting a similar lcst: is the age of poly(NIPAM) over? J. Am. Chem. Soc. 2006, 128, 13046–13047. [Google Scholar] [CrossRef]
- Rogers, R.D.; Seddon, K.R. Ionic liquids -solvents of the future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci. 2009, 34, 431–448. [Google Scholar] [CrossRef]
- Ueki, T.; Watanabe, M. Macromolecules in ionic liquids: Progress, challenges, and opportunities. Macromolecules 2008, 41, 3739–3749. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Yang, J.; Xu, C.; Zhang, Q.; Peng, Z. Ionic gels and their applications in stretchable electronics. Macromol. Rapid Commun. 2018, 39, 1800246. [Google Scholar] [CrossRef] [PubMed]
- Lodge, T.P.; Ueki, T. Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc. Chem. Res. 2016, 49, 2107–2114. [Google Scholar] [CrossRef]
- Lee, H.-N.; Lodge, T.P. Lower critical solution temperature (LCST) phase behavior of poly(ethylene oxide) in ionic liquids. J. Phys. Chem. Lett. 2010, 1, 1962–1966. [Google Scholar] [CrossRef]
- Kodama, K.; Nanashima, H.; Ueki, T.; Kokubo, H.; Watanabe, M. Lower critical solution temperature phase behavior of linear polymers in imidazolium-based ionic liquids: Effects of structural modifications. Langmuir 2009, 25, 3820–3824. [Google Scholar] [CrossRef] [PubMed]
- He, Y.Y.; Boswell, P.G.; Buhlmann, P.; Lodge, T.P. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J. Phys. Chem. B 2007, 111, 4645–4652. [Google Scholar] [CrossRef]
- Ueki, T.; Watanabe, M.; Lodge, T.P. Doubly thermosensitive self-assembly of diblock copolymers in ionic liquids. Macromolecules 2009, 42, 1315–1320. [Google Scholar] [CrossRef]
- Noro, A.; Matsushima, S.; He, X.D.; Hayashi, M.; Matsushita, Y. Thermoreversible supramolecular polymer gels via metal-ligand coordination in an ionic liquid. Macromolecules 2013, 46, 8304–8310. [Google Scholar] [CrossRef]
- Ueki, T.; Usui, R.; Kitazawa, Y.; Lodge, T.P.; Watanabe, M. Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly. Macromolecules 2015, 48, 5928–5933. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Fan, X.H.; Shen, Z.H.; Zhou, Q.F. Thermoreversible ion gel with tunable modulus self-assembled by a liquid crystalline triblock copolymer in ionic liquid. Macromolecules 2015, 48, 4927–4935. [Google Scholar] [CrossRef]
- Tamate, R.; Hashimoto, K.; Ueki, T.; Watanabe, M. Block copolymer self-assembly in ionic liquids. Phys. Chem. Chem. Phys. 2018, 20, 21803–21808. [Google Scholar] [CrossRef]
- Ueki, T.; Watanabe, M. Upper critical solution temperature behavior of poly(N-isopropylacrylamide) in an ionic liquid and preparation of thermo-sensitive nonvolatile gels. Chem. Lett. 2006, 35, 964–965. [Google Scholar] [CrossRef]
- Asai, H.; Fujii, K.; Ueki, T.; Sawamura, S.; Nakamura, Y.; Kitazawa, Y.; Watanabe, M.; Han, Y.-S.; Kim, T.-H.; Shibayama, M. Structural study on the UCST-type phase separation of poly(N-isopropylacrylamide) in ionic liquid. Macromolecules 2013, 46, 1101–1106. [Google Scholar] [CrossRef]
- De Santis, S.; La Mesa, C.; Masci, G. On the upper critical solution temperature of PNIPAAM in an ionic liquid: Effect of molecular weight, tacticity and water. Polymer 2017, 120, 52–58. [Google Scholar] [CrossRef]
- Biswas, C.S.; Stadler, F.J.; Yan, Z.-C. Tacticity effect on the upper critical solution temperature behavior of poly(N-isopropylacrylamide) in an imidazolium ionic liquid. Polymer 2018, 155, 101–108. [Google Scholar] [CrossRef]
- Ray, B.; Okamoto, Y.; Kamigaito, M.; Sawamoto, M.; Seno, K.; Kanaoka, S.; Aoshima, S. Effect of tacticity of poly(N-isopropylacrylamide) on the phase separation temperature of its aqueous solutions. Polym. J. 2005, 37, 234–237. [Google Scholar] [CrossRef]
- He, Y.; Lodge, T.P. Thermoreversible ion gels with tunable melting temperatures from triblock and pentablock copolymers. Macromolecules 2008, 41, 167–174. [Google Scholar] [CrossRef]
- Lee, H.N.; Bai, Z.F.; Newell, N.; Lodge, T.P. Micelle/inverse micelle self-assembly of a PEO-PNIPAM block copolymer in ionic liquids with double thermoresponsivity. Macromolecules 2010, 43, 9522–9528. [Google Scholar] [CrossRef]
- Ueki, T.; Nakamura, Y.; Usui, R.; Kitazawa, Y.; So, S.; Lodge, T.P.; Watanabe, M. Photoreversible gelation of a triblock copolymer in an ionic liquid. Angew. Chem. Int. Ed. 2015, 54, 3018–3022. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, P. Spectral insights into gelation microdynamics of PNIPAM in an ionic liquid. J. Phys. Chem. B 2011, 115, 10604–10614. [Google Scholar] [CrossRef]
- Ueki, T.; Nakamura, Y.; Yamaguchi, A.; Niitsuma, K.; Lodge, T.P.; Watanabe, M. UCST phase transition of azobenzene-containing random copolymer in an ionic liquid. Macromolecules 2011, 44, 6908–6914. [Google Scholar] [CrossRef]
- So, S.; Hayward, R.C. Tunable upper critical solution temperature of poly(N-isopropylacrylamide) in ionic liquids for sequential and reversible self-folding. ACS Appl. Mater. Interfaces 2017, 9, 15785–15790. [Google Scholar] [CrossRef]
- Nakano, S.; Ogiso, T.; Kita, R.; Shinyashiki, N.; Yagihara, S.; Yoneyama, M.; Katsumoto, Y. Thermoreversible gelation of isotactic-rich poly(N-isopropylacrylamide) in water. J. Chem. Phys. 2011, 135, 114903. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, F.; Katsumoto, Y.; Nakano, S.; Kita, R. LCST phase separation and thermoreversible gelation in aqueous solutions of stereo-controlled poly(N-isopropylacrylamide)s. React. Funct. Polym. 2013, 73, 894–897. [Google Scholar] [CrossRef]
- Biswas, C.S.; Wu, Y.; Wang, Q.; Du, L.; Mitra, K.; Ray, B.; Yan, Z.-C.; Du, B.; Stadler, F.J. Effect of tacticity and molecular weight on the rheological properties of poly(N-isopropylacrylamide) gels in benzyl alcohol. J. Rheol. 2017, 61, 1345–1357. [Google Scholar] [CrossRef]
- Hashmi, S.; Vatankhah-Varnoosfaderani, M.; GhavamiNejad, A.; Obiweluozor, F.O.; Du, B.; Stadler, F.J. Self-associations and temperature dependence of aqueous solutions of zwitterionically modified N-isopropylacrylamide copolymers. Rheol. Acta 2015, 54, 501–516. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, L.; Wu, C. LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules 2006, 39, 2325–2329. [Google Scholar] [CrossRef]
- Wu, C. A comparison between the “coil-to-globule” transition of linear chains and the “volume phase transition” of spherical microgels. Polymer 1998, 39, 4609–4619. [Google Scholar] [CrossRef]
- Tong, Z.; Zeng, F.; Zheng, X.; Sato, T. Inverse molecular weight dependence of cloud points for aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 1999, 32, 4488–4490. [Google Scholar] [CrossRef]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Stadler, F.J. Quantifying primary loops in polymer gels by linear viscoelasticity. Proc. Natl. Acad. Sci. USA 2013, 110, E1972. [Google Scholar] [CrossRef]
- Zhou, H.; Woo, J.; Cok, A.M.; Wang, M.; Olsen, B.D.; Johnson, J.A. Counting primary loops in polymer gels. Proc. Natl. Acad. Sci. USA 2012, 109, 19119. [Google Scholar] [CrossRef]
- Noro, A.; Matsushita, Y.; Lodge, T.P. Thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 2008, 41, 5839–5844. [Google Scholar] [CrossRef]
- Noro, A.; Matsushita, Y.; Lodge, T.P. Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 2009, 42, 5802–5810. [Google Scholar] [CrossRef]
- He, Y.Y.; Lodge, T.P. A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chem. Commun. 2007, 26, 2732–2734. [Google Scholar] [CrossRef]
- Kitazawa, Y.; Ueki, T.; Imaizumi, S.; Lodge, T.P.; Watanabe, M. Tuning of sol gel transition temperatures for thermoreversible ion gels. Chem. Lett. 2014, 43, 204–206. [Google Scholar] [CrossRef]
- Zhou, C.; Hillmyer, M.A.; Lodge, T.P. Efficient formation of multicompartment hydrogels by stepwise self-assembly of thermoresponsive abc triblock terpolymers. J. Am. Chem. Soc. 2012, 134, 10365–10368. [Google Scholar] [CrossRef]
- Verber, R.; Blanazs, A.; Armes, S.P. Rheological studies of thermo-responsive diblock copolymer worm gels. Soft Matter 2012, 8, 9915–9922. [Google Scholar] [CrossRef]
- Hamley, I.W. Block Copolymers in Solution: Fundamentals and Applications; John Wiley and Sons: Chichester, UK, 2005. [Google Scholar]
- Fu, W.; Bai, W.; Jiang, S.; Seymour, B.T.; Zhao, B. UCST-type thermoresponsive polymers in synthetic lubricating oil polyalphaolefin (PAO). Macromolecules 2018, 51, 1674–1680. [Google Scholar] [CrossRef]
- Tamate, R.; Usui, R.; Hashimoto, K.; Kitazawa, Y.; Kokubo, H.; Watanabe, M. Photo/thermoresponsive ABC triblock copolymer-based ion gels: Photoinduced structural transitions. Soft Matter 2018, 14, 9088–9095. [Google Scholar] [CrossRef]
- Xuan, S.; Lee, C.-U.; Chen, C.; Doyle, A.B.; Zhang, Y.; Guo, L.; John, V.T.; Hayes, D.; Zhang, D. Thermoreversible and injectable ABC polypeptoid hydrogels: Controlling the hydrogel properties through molecular design. Chem. Mat. 2016, 28, 727–737. [Google Scholar] [CrossRef]
- Drzal, P.L.; Shull, K.R. Origins of mechanical strength and elasticity in thermally reversible, acrylic triblock copolymer gels. Macromolecules 2003, 36, 2000–2008. [Google Scholar] [CrossRef]
- Winter, H.H. Can the gel point of a cross-linking polymer be detected by the G′–G″ crossover? Polym. Eng. Sci. 1987, 27, 1698–1702. [Google Scholar] [CrossRef]
- Chambon, F.; Winter, H.H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 1987, 31, 683–697. [Google Scholar] [CrossRef]
- Winter, H.H.; Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 1986, 30, 367–382. [Google Scholar] [CrossRef]
- Chambon, F.; Petrovic, Z.S.; MacKnight, W.J.; Winter, H.H. Rheology of model polyurethanes at the gel point. Macromolecules 1986, 19, 2146–2149. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; He, J.; Hu, G. Gelation in carbon nanotube/polymer composites. Polymer 2003, 44, 7529–7532. [Google Scholar] [CrossRef]
- Sun, F.; Huang, Q.; Wu, J. Rheological behaviors of an exopolysaccharide from fermentation medium of a Cordyceps sinensis fungus (Cs-HK1). Carbohydr. Polym. 2014, 114, 506–513. [Google Scholar] [CrossRef]
- Mo, G.; Zhang, R.; Wang, Y.; Yan, Q. Rheological and optical investigation of the gelation with and without phase separation in PAN/DMSO/H2O ternary blends. Polymer 2016, 84, 243–253. [Google Scholar] [CrossRef]
- In some cases, the intersection cannot be reached because the phase angle δ above 40 °C approaches 90°, which is beyond the resolution of rheometer and thus generates unreasonably high tanδ value. Therefore, we select 40 °C, at which tanδ points are closest, as their transition points.
Sample | Mn (g/mol) | PDI | Meso-Diad Content (m) (%) |
---|---|---|---|
m47 | 35,400 | 1.25 | 47 |
m58 | 39,500 | 1.24 | 58 |
m66 | 34,900 | 1.22 | 66 |
m79 | 40,300 | 1.26 | 79 |
Hm48 | 62,900 | 1.49 | 48 |
Hm57 | 60,200 | 1.26 | 57 |
Hm67 | 62,800 | 1.32 | 67 |
Hm78 | 85,700 | 1.38 | 78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.-C.; Biswas, C.S.; Stadler, F.J. Rheological Study on the Thermoreversible Gelation of Stereo-Controlled Poly(N-Isopropylacrylamide) in an Imidazolium Ionic Liquid. Polymers 2019, 11, 783. https://doi.org/10.3390/polym11050783
Yan Z-C, Biswas CS, Stadler FJ. Rheological Study on the Thermoreversible Gelation of Stereo-Controlled Poly(N-Isopropylacrylamide) in an Imidazolium Ionic Liquid. Polymers. 2019; 11(5):783. https://doi.org/10.3390/polym11050783
Chicago/Turabian StyleYan, Zhi-Chao, Chandra Sekhar Biswas, and Florian J. Stadler. 2019. "Rheological Study on the Thermoreversible Gelation of Stereo-Controlled Poly(N-Isopropylacrylamide) in an Imidazolium Ionic Liquid" Polymers 11, no. 5: 783. https://doi.org/10.3390/polym11050783
APA StyleYan, Z. -C., Biswas, C. S., & Stadler, F. J. (2019). Rheological Study on the Thermoreversible Gelation of Stereo-Controlled Poly(N-Isopropylacrylamide) in an Imidazolium Ionic Liquid. Polymers, 11(5), 783. https://doi.org/10.3390/polym11050783