Recent Applications of Chitin- and Chitosan-Based Polymers in Plants
Abstract
:1. Introduction
2. Chitin-Based Polymers
3. Chitosan-Based Polymers
4. Open Questions, Future Perspectives, and Conclusions
Funding
Conflicts of Interest
References
- Malerba, M.; Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 2017, 17, 996. [Google Scholar] [CrossRef]
- Malerba, M.; Cerana, R. Recent advances of chitosan application in plants. Polymers 2018, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Pusztahelyi, T. Chitin and chitin-related compounds in plant–fungal interactions. Mycology 2018, 9, 189–201. [Google Scholar] [CrossRef]
- Sun, C.; Fu, D.; Jin, L.; Chen, M.; Zheng, X.; Yu, T. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydr. Polym. 2018, 199, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.J.; Dominguez-Nuñez, J.A.; Aranaz, I.; Poza-Carrión, C.; Ramonell, K.; Somerville, S.; Berrocal-Lobo, M. Short-chain chitin oligomers: promoters of plant growth. Mar. Drugs 2017, 15, 40. [Google Scholar] [CrossRef]
- Egusa, M.; Matsui, H.; Urakami, T.; Okuda, S.; Ifuku, S.; Nakagami, H.; Kaminaka, H. Chitin nanofibers elucidates the elicitor activity of polymeric chitin in plants. Front. Plant Sci. 2015, 6, 1098–1105. [Google Scholar] [CrossRef]
- Parada, R.Y.; Egusa, M.; Aklog, Y.F.; Miura, C.; Ifuku, S.; Kaminaka, H. Optimization of nanofibrillation degree of chitin for induction of plant disease resistance: elicitor activity and systemic resistance induced by chitin nanofiber in cabbage and strawberry. Int. J. Biol. Macromol. 2018, 118, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Egusa, M.; Parada, R.Y.; Aklog, Y.F.; Ifuku, S.; Kaminaka, H. Nanofibrillation enhances the protective effect of crab shells against Fusarium wilt disease in tomato. Int. J. Biol. Macromol. 2019, 128, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Han, Y.; Tan, J.; Wang, Y.; Wang, G.; Wang, H. Effects of nanochitin on the enhancement of the grain yield and quality of winter wheat. J. Agric. Food Chem. 2018, 66, 6637–6645. [Google Scholar] [CrossRef]
- Liang, R.; Li, X.; Yuan, W.; Jin, S.; Hou, S.; Wang, M.; Wang, H. Antifungal activity of nanochitin whisker against crown rot diseases of wheat. J. Agric. Food Chem. 2018, 66, 9907–9913. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, S.; Jiao, Y.; Wang, H. Synergistic effects of nanochitin on inhibition of tobacco root rot disease. Int. J. Biol. Macromol. 2017, 99, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, Z.E. Iron nanoparticles a-chitin nanocomposite for enhanced antimicrobial, dyes degradation and heavy metals removal activities. J. Polym. Environ. 2018, 26, 3638–3654. [Google Scholar] [CrossRef]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. Int. J. Biol. Macromol. 2018, 113, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Divya, K.; Jisha, M.S.; Vijayan, S.; Nair, S.J. Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. Int. J. Biol. Macromol. 2019, 124, 1053–1059. [Google Scholar] [CrossRef]
- Li, R.; He, J.; Xie, H.; Wang, W.; Bose, S.K.; Sun, Y.; Hu, J.; Yin, H. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 2019, 126, 91–100. [Google Scholar] [CrossRef]
- Chun, S.-C.; Chandrasekaran, M. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. Int. J. Biol. Macromol. 2019, 125, 948–954. [Google Scholar] [CrossRef]
- Athawale, V.; Paralikar, P.; Avinash, P.; Ingle, A.P.; Rai, M. Biogenically engineered nanoparticles inhibit Fusarium oxysporum causing soft-rot of ginger. IET Nanobiotechnol. 2018, 12, 1084–1089. [Google Scholar] [CrossRef]
- Ha, N.M.C.; Nguyen, T.H.; Wang, S.-L.; Nguyen, A.D. Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res. Chem. Intermed. 2019, 45, 51–63. [Google Scholar] [CrossRef]
- Khalifa, N.S.; Hasanen, M.N. The effect of chitosan-PMAA-NPK nanofertilizer on Pisum sativum plants. 3 Biotech 2018, 8, 193. [Google Scholar] [CrossRef]
- Deshpande, P.; Dapkekar, A.; Oak, M.; Paknikar, K.; Rajwade, J. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat. PLoS ONE 2018, 13, e0191035. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. Int. J. Biol. Macromol. 2019, 127, 126–135. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A.; Vasil’kov, A.Y.; Said-Galiev, E.E.; Rubina, M.S.; Khokhlov, A.R.; Naumkin, A.R.; Shtykova, E.V.; Alghuthaymi, M.A. Bimetallic blends and chitosan nanocomposites: novel antifungal agents against cotton seedling damping-off. Eur. J. Plant Pathol. 2018, 151, 57–72. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.E.; Morsi, S.M.M.; Salama, D.M.; Abdel-Aziz, M.S.; Mohamed, S.; Abd Elwahed, M.S.; Shaaban, E.A.; Youssef, A.M. Preparation and characterization of chitosan/polyacrylic acid/copper nanocomposites and their impact on onion production. Int. J. Biol. Macromol. 2019, 123, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Sathiyabama, M.; Manikandan, A. Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. J. Agric. Food Chem. 2018, 66, 1784–1790. [Google Scholar] [CrossRef]
- Kaur, P.; Duhan, J.S.; Thakur, R. Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2018, 14, 466–471. [Google Scholar] [CrossRef]
- Nhien, L.T.A.; Luong, N.D.; Tien, L.T.T.; Luan, L.Q. Radiation synthesis of silver nanoparticles/chitosan for controlling leaf fall disease on rubber trees causing by Corynespora cassiicola. J. Nanomater. 2018. [Google Scholar] [CrossRef]
- Luan, L.Q.; Xo, D.H. In vitro and in vivo fungicidal effects of γ-irradiation synthesized silver nanoparticles against Phytophthora capsici causing the foot rot disease on pepper plant. J. Plant Pathol. 2018, 100, 241–248. [Google Scholar] [CrossRef]
- Liang, W.; Yu, A.; Wang, G.; Zheng, F.; Hu, P.; Jia, J.; Xu, H. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydr. Polym. 2018, 199, 437–444. [Google Scholar] [CrossRef]
- Nadendla, S.R.; Rani, T.S.; Vaikuntapu, P.R.; Maddu, R.R.; Podile, A.R. HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr. Polym. 2018, 199, 11–19. [Google Scholar] [CrossRef]
- Asgari-Targhi, G.; Iranbakhsh, A.; Ardebili, Z.O. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol. Biochem. 2018, 127, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Sathiyabama, M.; Indhumathi, M.; Muthukumar, S. Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydr. Polym. 2019, 212, 169–177. [Google Scholar]
- Martin-Saldaña, S.; Chevalier, M.T.; Iglesias, M.J.; Colman, S.L.; Casalongué, C.A.; Álvarez, V.A.; Chevalier, A.A. Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: recycling shrimp fishing industry waste. Carbohydr. Polym. 2018, 200, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. Int. J. Biol. Macromol. 2019, 123, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Kalagatur, N.K.; Ghosh, O.S.N.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Jin, O.; Xu, C.; Fan, S.; Wang, C.; Xie, P. Synthesis, characterization and antifungal activity of coumarin-functionalized chitosan derivatives. Int. J. Biol. Macromol. 2018, 106, 179–184. [Google Scholar] [CrossRef]
- Popova, E.V.; Domnina, N.S.; Kovalenko, N.M.; Sokornova, S.V.; Tyuterev, S.L. Influence of chitosan hybrid derivatives on induced wheat resistance to pathogens with different nutrition strategies. Appl. Biochem. Microbiol. 2018, 54, 535–539. [Google Scholar] [CrossRef]
- Merino, D.; Mansilla, A.Y.; Casalongué, C.A.; Alvarez, V.A. Preparation, characterization, and in vitro testing of nanoclay antimicrobial activities and elicitor capacity. J. Agric. Food Chem. 2018, 66, 3101–3109. [Google Scholar] [CrossRef]
- Hernández-Hernández, H.; Juárez-Maldonado, A.; Benavides-Mendoza, A.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Sánchez-Aspeytia, D.; González-Morales, S. Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy 2018, 8, 175. [Google Scholar] [CrossRef]
- Silveira, N.M.; Seabra, A.B.; Marcos, F.C.C.; Pelegrino, M.T.; Machado, E.C.; Ribeiro, R.V. Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide 2019, 84, 38–44. [Google Scholar] [CrossRef]
- Lustriane, C.; Dwivany, F.N.; Suendo, V.; Reza, M. Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J. Plant Biotechnol. 2018, 45, 36–44. [Google Scholar] [CrossRef]
- Mannozzi, C.; Tylewicz, U.; Chinnici, F.; Siroli, L.; Rocculi, P.; Dalla Rosa, M.; Romani, S. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem. 2018, 51, 18–24. [Google Scholar] [CrossRef]
- Chen, C.; Nie, Z.; Wan, C.; Chen, J. Preservation of Xinyu tangerines with an edible coating using Ficus hirta Vahl. fruits extract-incorporated chitosan. Biomolecules 2019, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Luksiene, Z.; Buchovec, I. Impact of chlorophyllin-chitosan coating and visible light on the microbial contamination, shelf life, nutritional and visual quality of strawberries. Innov. Food Sci. Emerg. Tecnol. 2019, 52, 463–472. [Google Scholar] [CrossRef]
- Kou, X.; He, Y.; Li, Y.; Chen, X.; Feng, Y.; Xue, Z. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chem. 2019, 270, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Chen, W.; Wu, C.; Kou, X.; Fan, G.; Li, T.; Wu, Z. Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. Int. J. Biol. Macromol. 2019, 126, 917–925. [Google Scholar] [CrossRef]
- Iriti, M.; Faoro, F. Chitosan as a MAMP, searching for a PRR. Plant Signal Behav. 2009, 4, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Cerana, R. Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells. Int. J. Mol. Sci. 2015, 16, 3019–3034. [Google Scholar] [CrossRef]
- Petutschnig, E.K.; Jones, A.M.E.; Serazetdinova, L.; Lipka, U.; Lipka, V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 2010, 285, 28902–28911. [Google Scholar] [CrossRef]
- Gubaeva, E.; Gubaev, A.; Melcher, R.L.J.; Cord-Landwehr, S.; Singh, R.; El Gueddari, N.E.; Moerschbacher, B.M. ‘Slipped sandwich’ model for chitin and chitosan perception in Arabidopsis. Mol. Plant Microbe Interact. 2018, 31, 1145–1153. [Google Scholar] [CrossRef]
- Kwak, S.-Y.; Lew, T.T.S.; Sweeney, C.J.; Koman, V.B.; Wong, M.H.; Bohmert-Tatarev, K.; Snell, K.D.; Seo, J.S.; Chua, N.-H.; Strano, M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 2019, 14, 447–455. [Google Scholar] [CrossRef]
Plant Species | Chitin Characteristics | Chitin Effect | Reference |
---|---|---|---|
Solanum lycopersicum | From Saccharomyces cerevisiae cell wall | Resistance against Botrytis cinerea | [4] |
Arabidopsis thaliana | CH oligomers (mainly tetramers) | Increased fresh weight, radicle length and total carbon and nitrogen content | [5] |
Arabidopsis thaliana, Oryza sativa japonica | CH oligomers | Resistance against Alternaria brassicicola and Pseudomonas syringae | [6] |
Brassica oleracea, Fragaria x ananassa | CH nanofibers | Resistance against Alternaria brassicicola and Colletotrichum fructicola | [7] |
Solanum lycopersicum | Protein/CaCO3/CH nanofibers or protein/CH nanofibers | Plant growth, resistance against Fusarium oxysporum | [8] |
Triticun aestivum | Nanochitin whisker | Yield, grain protein, iron, and zinc contents | [9] |
Triticun aestivum | Nanochitin whisker | Resistance against Fusarium pseudograminearum and Fusarium graminearum | [10] |
Nicotiana tabacum L. | Nanochitin whisker | Increased seed germination and growth, resistance against Fusarium spp. | [11] |
In vitro test of pathogens growth | Iron/CH nanoparticles | Inhibition of Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi and Fusarium oxysporum growth | [12] |
Plant Species | Metal Complexed to CHT Nanoparticles | Effect | Reference |
---|---|---|---|
Triticum turgidum var. durum | Zn | Gluten content increase | [21] |
Zea mays | Zn | Crop yield promotion | [22] |
Gossypium spp. | Zn or Cu | Resistance against Rhizoctonia solani | [23] |
Allium cepa L. | Cu | Increase of plant growth and nutrient content of bulbs | [24] |
Eleusine coracana | Cu | Increase of plant growth and resistance against Pyricola grisea | [25] |
Cicer arietinum L. | CuO, ZnO or Ag | Resistance against Fusarium oxysporum | [26] |
Hevea brasiliensis | Ag | Resistance against Corynespora cassiicola | [27] |
Piper nigrum | Ag | Resistance against Phytophthora capsici | [28] |
Oryza sativa L. | La | Growth promotion and improved disease resistance | [29] |
Plant Species | Molecule Complexed to CHT | Effect | Reference |
---|---|---|---|
Solanum lycopersicum | Harpin | Resistance against Rhizoctonia solani | [30] |
Capsicum annuum | Tripolyphosphate | Stimulation of plant growth and biomass accumulation | [31] |
Cicer arietinum L. | Thiamine | Stimulation of plant growth and resistance against Fusarium oxysporum | [32] |
Lactuca sativa L. | Salicylic acid | Stimulation of plant growth and improved disease resistance | [33] |
Zea mays L. | Salicylic acid | Stimulation of plant growth and improved disease resistance | [34] |
Zea mays L. | Cymbopogon martinii essential oil | Resistance against Fusarium graminearum | [35] |
Hevea brasiliensis | Coumarin | Resistance against Alternaria solanii and Fusarium spp. | [36] |
Triticum aestivum L. | Vanillin and salicylic acid | Resistance against Puccinia recondita and Cochliobolus sativus | [37] |
Solanum lycopersicum | Bentonite | Resistance against Pseudomonas syringe and Fusarium solani | [38] |
Solanum lycopersicum | Cu | Stimulation of plant growth and expression of defense genes | [39] |
Saccarum spp. | S-nitrosoglutathione | Improved drought tolerance | [40] |
Plant Species | CHT-Based Polymer | Effect | Reference |
---|---|---|---|
Musa acuminata AAA group | CHT nanoparticles | Shelf life extension and maintenance of fruit quality | [41] |
Vaccinium myrtillus | CHT + procyanidins | Promotion of quality maintenance and inhibition of fruit pathogens growth | [42] |
Citrus reticulata Blanco | CHT + Ficus hirta Vahl. fruits extract | Reduction postharvest loss and enhancement of fruits storability | [43] |
Fragaria × ananassa Duch. | CHT + photoactivated chlorophyllin | Extension of fruit shelf life and inhibition of pathogens growth | [44] |
Zizyphus jujuba Mill. cv Dongzao | CHT/nano-silica/sodium alginate | Extension of fruit shelf life and inhibition of pathogens growth | [45] |
Ginkgo biloba L. | CHT/nano-TiO2 and CHT/nano-SiO2 | Preservation of seeds quality | [46] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malerba, M.; Cerana, R. Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers 2019, 11, 839. https://doi.org/10.3390/polym11050839
Malerba M, Cerana R. Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers. 2019; 11(5):839. https://doi.org/10.3390/polym11050839
Chicago/Turabian StyleMalerba, Massimo, and Raffaella Cerana. 2019. "Recent Applications of Chitin- and Chitosan-Based Polymers in Plants" Polymers 11, no. 5: 839. https://doi.org/10.3390/polym11050839
APA StyleMalerba, M., & Cerana, R. (2019). Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers, 11(5), 839. https://doi.org/10.3390/polym11050839