Soluble Polyimides Bearing (cis, trans)-Hydrogenated Bisphenol A and (trans, trans)-Hydrogenated Bisphenol A Moieties: Synthesis, Properties and the Conformational Effect
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Characterization
2.3. Synthesis of the Monomers
2.3.1. Synthesis of HBPA-Based Dinitro Isomers
2.3.2. Separation of HBPA-Based Dinitro Isomers
2.3.3. Synthesis of (cis, trans)-bis(4-aminophenoxy)HBPA (2a′)
2.4. Synthesis of Polyimide Films
3. Results and discussion
3.1. Monomers Synthesis and Characterization
3.2. Polyimides Synthesis
3.3. Thermal Properties
3.4. Mechanical and Morphological Properties
3.5. Solubility
3.6. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, H.; He, S.; Qin, X.; Li, C.; Li, T. Interfacial engineering in metal–organic framework-based mixed matrix membranes using covalently grafted polyimide brushes. J. Am. Chem. Soc. 2018, 140, 17203–17210. [Google Scholar] [CrossRef]
- Hossain, I.; Nam, S.Y.; Rizzuto, C.; Barbieri, G.; Tocci, E.; Kim, T.H. PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances. J. Membr. Sci. 2019, 574, 270–281. [Google Scholar] [CrossRef]
- Feng, H.; Qiu, Y.; Qian, L.; Chen, Y.; Xu, B.; Xin, F. Flame inhibition and charring effect of aromatic polyimide and aluminum diethylphosphinate in polyamide 6. Polymers 2019, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, M.; Saha, S.; Ravindran, E.; Rathnayake, H. A sol–gel polymerization method for creating nanoporous polyimide silsesquioxane nanostructures as soft dielectric materials. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 562–571. [Google Scholar] [CrossRef]
- Liu, H.; Zhai, L.; Bai, L.; He, M.; Wang, C.; Mo, S.; Fan, L. Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer 2019, 163, 106–114. [Google Scholar] [CrossRef]
- Nakabayashi, K.; Imai, T.; Fu, M.C.; Ando, S.; Higashihara, T.; Ueda, M. Poly (phenylene thioether) s with fluorene-based cardo structure toward high transparency, high refractive index, and low birefringence. Macromolecules 2016, 49, 5849–5856. [Google Scholar] [CrossRef]
- Takizawa, K.; Fukuchi, S.; Takemasa, C.; Ishige, R.; Asai, S.; Ando, S. Enhancing photoconductivity of aromatic polyimide films by incorporating fluorinated dianhydrides and main chain triphenylamine structure. Polymer 2018, 157, 122–130. [Google Scholar] [CrossRef]
- Ando, S.; Matsuura, T.; Sasaki, S. Coloration of Aromatic Polyimides and Electronic Properties of Their Source Materials. Polym. J. 1997, 29, 69. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Ma, T.; Zhao, J.; Xu, X.; Yang, F.; Xiang, X.Y. Organosolubility and optical transparency of novel polyimides derived from 2′,7′-bis(4-aminophenoxy)-spiro(fluorene-9,9′-xanthene). Polym. Chem. 2010, 1, 485–493. [Google Scholar] [CrossRef]
- Kim, S.D.; Lee, S.; Heo, J.; Kim, S.Y.; Chung, I.S. Soluble polyimides with trifluoromethyl pendent groups. Polymer 2013, 54, 5648–5654. [Google Scholar] [CrossRef]
- Yi, L.; Huang, W.; Yan, D. Polyimides with side groups: Synthesis and effects of side groups on their properties. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 533–559. [Google Scholar] [CrossRef]
- Sharma, B.; Verma, R.; Baur, C.; Bykova, J.; Mabry, J.M.; Smith, D.W. Ultra low dielectric, self-cleansing and highly oleophobic POSS-PFCP aryl ether polymer composites. J. Mater. Chem. C 2013, 1, 7222–7227. [Google Scholar] [CrossRef]
- Sidra, L.R.; Chen, G.; Mushtaq, N.; Ma, K.; Bashir, B.; Fang, X. Processable poly(benzoxazole imide)s derived from asymmetric benzoxazole diamines containing 4-phenoxy aniline: synthesis, properties and the isomeric effect. Polym. Chem. 2018, 9, 2785–2796. [Google Scholar] [CrossRef]
- Barzic, A.I.; Hulubei, C.; Stoica, I.; Albu, R.M. Insights on Light Dispersion in Semi-Alicyclic Polyimide Alignment Layers to Reduce Optical Losses in Display Devices. Macromol. Mater. Eng. 2018, 303, 1800235. [Google Scholar] [CrossRef]
- Ni, H.J.; Liu, J.G.; Wang, Z.H.; Yang, S.Y. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications. J. Ind. Eng. Chem. 2015, 28, 16–27. [Google Scholar] [CrossRef]
- Mi, Z.; Liu, Z.; Wang, C.; Wang, T.; Zhang, Z.; Wang, D.; Zhao, X.; Zhou, H.; Zhang, Y.; Chen, C. Novel copolyimides containing 1, 4: 3, 6-dianhydro-d-mannitol unit Preparation, characterization, thermal, mechanical, soluble, and optical properties. High Perform. Polym. 2019, 31, 220–229. [Google Scholar] [CrossRef]
- Hu, X.; Yan, J.; Wang, Y.; Mu, H.; Wang, Z.; Cheng, H.; Zhao, F.; Wang, Z. Colorless polyimides derived from 2R, 5R, 7S, 10S-naphthanetetracarboxylic dianhydride. Polym. Chem. 2017, 8, 6165–6172. [Google Scholar] [CrossRef]
- Fujiwara, E.; Fukudome, H.; Takizawa, K.; Ishige, R.; Ando, S. Pressure-Induced Variations of Aggregation Structures in Colorless and Transparent Polyimide Films Analyzed by Optical Microscopy, UV–Vis Absorption, and Fluorescence Spectroscopy. J. Phys. Chem. B 2018, 122, 8985–8997. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Fujii, M.; Ishii, J.; Yamaguchi, S.; Takezawa, E.; Kagayama, T.; Ishikawa, A. Colorless polyimides derived from 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride, self-orientation behavior during solution casting, and their optoelectronic applications. Polymer 2014, 55, 4693–4708. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Z.; Zhang, S.; Gao, L.; Ding, M. Synthesis and properties of polyimides derived from cis- and trans-1, 2, 3, 4-cyclohexanetetracarboxylic dianhydrides. Polymer 2004, 45, 2539–2549. [Google Scholar] [CrossRef]
- Mi, Z.; Liu, Z.; Wang, C.; Liu, Y.; Zhou, C.; Wang, D.; Zhao, X.; Zhou, H.; Zhang, Y.; Chen, C. Transparent and soluble polyimide films containing 4,4′-isopropylidenedicyclohexanol (Cis-HBPA) units: Preparation, characterization, thermal, mechanical, and dielectric properties. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 2115–2128. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, Y.; Zhang, S.; Pan, Y.; Yao, L.; Liu, H.; Gu, Q.; Yang, B.; Ma, Y. Hybridization and de-hybridization between the locally-excited (LE) state and the charge-transfer (CT) state: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 2016, 18, 24176–24184. [Google Scholar] [CrossRef] [PubMed]
- Erman, B.; Flory, P.J.; Hummel, J.P. Moments of the End-to-End Vectors for p-Phenylene Polyamides and Polyesters. Macromolecules 1980, 13, 484–491. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, G.; Feng, C.; Yang, J. High T g and Thermo-Oxidatively Stable Thermosetting Polyimides Derived from a Carborane-Containing Diamine. Macromol. Rapid Commun. 2018, 39, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.H.; Wie, J.J.; Lee, K.M.; White, T.J.; Tan, L.-S. Impact of Backbone Rigidity on the Photomechanical Response of Glassy, Azobenzene-Functionalized Polyimides. Macromolecules 2014, 47, 659–667. [Google Scholar] [CrossRef]
- Mi, Z.; Liu, Z.; Tian, C.; Zhao, X.; Zhou, H.; Wang, D.; Chen, C. Soluble polyimides containing 1, 4: 3, 6-dianhydro-d-glucidol and fluorinated units: Preparation, characterization, optical, and dielectric properties. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3253–3265. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y. Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation. J. Membr. Sci. 2015, 496, 142–155. [Google Scholar] [CrossRef]
- Shirai, K.; Takayama, T.; Akagawa, K.; Kudo, K.; Choi, J. Constitutionally isomeric alicyclic polyimides: Origin of siteselectivity in the reaction of unsymmetrical dianhydride and structure-derived difference in physical properties. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4246–4254. [Google Scholar]
- Liu, Z.; Mi, Z.; Chen, C.; Zhou, H.; Zhao, X.; Wang, D. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method. Appl. Surf. Sci. 2017, 401, 69–78. [Google Scholar] [CrossRef]
- Jasinska, L.; Villani, M.; Wu, J.; Van Es, D.; Klop, E.; Rastogi, S.; Koning, C.E. Novel, Fully Biobased Semicrystalline Polyamides. Macromolecules 2011, 44, 3458–3466. [Google Scholar] [CrossRef]
- Chern, Y.T.; Twu, J.T.; Chen, J.C. High Tg and high organosolubility of novel polyimides containing twisted structures derived from 4-(4-amino-2-chlorophenyl)-1-(4-aminophenoxy)-2,6-di-tert-butylbenzene. Eur. J. 2009, 45, 1127–1138. [Google Scholar] [CrossRef]
- Susa, A.; Bijleveld, J.; Hernandez Santana, M.; Garcia, S.J. Understanding the Effect of the Dianhydride Structure on the Properties of Semiaromatic Polyimides containing a biobased fatty diamine. ACS Appl. Mater. Inter. 2018, 6, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Wang, D.; Song, G.; Dang, G.; Chen, C.; Zhou, H.; Zhao, X. Novel soluble polyimides derived from 2,2′-bis[4-(5-amino-2-pyridinoxy)phenyl]hexafluoropropane: Preparation, characterization, and optical, dielectric properties. Polymer 2014, 55, 3634–3641. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Miyauchi, M.; Nutt, S. Structure and properties of a phenylethynyl-terminated PMDA-type asymmetric polyimide. High Perform. Polym. 2019, 31, 261–272. [Google Scholar] [CrossRef]
- Tsai, Y.; Fan, C.-H.; Hung, C.-Y.; Tsai, F.-J. Synthesis and characterization of amorphous poly(ethylene terephthalate) copolymers containing bis[4-(2-hydroxyethoxy)phenyl]sulfone. Eur. J. 2009, 45, 115–122. [Google Scholar] [CrossRef]
- Ji, X.; Yan, J.; Liu, X.; Wang, Z.; Wang, Z. Synthesis and properties of polyimides derived from bis(4-aminophenyl)isohexides. High Perform. Polym. 2017, 29, 197–204. [Google Scholar] [CrossRef]
- Li, J.; Zhong, M.; Keil, H.; Zhu, H.; Herbst-Irmer, R.; Stalke, D.; De, S.; Koley, D.; Roesky, H.W.; Mingdong, Z. (PhC(NtBu)2Al)2(SiH2)4 six-membered heterocycle: comparable in structure to cyclohexane. Chem. Commun. 2019, 55, 2360–2363. [Google Scholar] [CrossRef]
- Jia, M.; Li, Y.; He, C.; Huang, X. Soluble Perfluorocyclobutyl Aryl Ether-Based Polyimide for High-Performance Dielectric Material. ACS Appl. Mater. Interfaces 2016, 8, 26352–26358. [Google Scholar] [CrossRef]
- Ji, X.; Wang, Z.; Yan, J.; Wang, Z. Partially bio-based polyimides from isohexide-derived diamines. Polymer 2015, 74, 38–45. [Google Scholar] [CrossRef]
Code | (η)(dL/g) a | Molecular weights b | ||
---|---|---|---|---|
PAA | Mn /104 | Mw /104 | Mw/Mn | |
PI-1′ | 1.23 | 8.8 | 15.0 | 1.70 |
PI-1 | 1.23 | 7.0 | 9.8 | 1.40 |
PI-2′ | 1.51 | − c | − | − |
PI-2 | 1.46 | − | − | − |
PI-3′ | 1.39 | − | − | − |
PI-3 | 0.93 | − | − | − |
PI-4′ | 1.03 | 8.0 | 14.1 | 1.76 |
PI-4 | 1.53 | 9.1 | 14.0 | 1.54 |
PI-5′ | 0.94 | 5.6 | 7.7 | 1.38 |
PI-5 | 0.87 | 5.2 | 6.9 | 1.33 |
Polyimides | Tg (°C) | T5% (°C) c | T10% (°C) c | RW (°C) d | |||
---|---|---|---|---|---|---|---|
DSC a | DMA b | In N2 | In the Air | In N2 | In the Air | ||
PI-1′ | 236 | 247 | 424 | 408 | 431 | 422 | 24 |
PI-1 | 275 | 267 | 426 | 407 | 433 | 421 | 23 |
PI-2′ | 258 | 270 | 419 | 400 | 427 | 416 | 34 |
PI-2 | − e | 292 | 425 | 404 | 432 | 419 | 35 |
PI-3′ | 251 | 241 | 428 | 387 | 436 | 407 | 34 |
PI-3 | − | 256 | 434 | 399 | 440 | 418 | 32 |
PI-4′ | 257 | 260 | 427 | 408 | 435 | 420 | 20 |
PI-4 | 268 | 276 | 429 | 417 | 437 | 427 | 14 |
PI-5′ | 206 | 208 | 431 | 419 | 438 | 429 | 26 |
PI-5 | 212 | 217 | 432 | 422 | 440 | 433 | 25 |
Polyimides | TS a (MPa) | TM b (GPa) | EB c (%) | Transmittance (%) e | λcut-off (nm) f | 2 θ (deg) | X-ray Diffraction (Å) g |
---|---|---|---|---|---|---|---|
PI-1′ | 105 ± 2.7 d | 3.2 ± 0.2 | 9.2 ± 2.1 | 76 | 347 | 17.08 | 5.19 |
PI-1 | 112 ± 1.0 | 2.3 ± 0.1 | 11 ± 1.0 | 74 | 349 | 17.73 | 4.99 |
PI-2′ | 117 ± 4.2 | 3.1 ± 0.5 | 8.8 ± 1.4 | 43 | 390 | 17.56 | 5.05 |
PI-2 | 103 ± 3 | 2.4 ± 0.6 | 8.6 ± 1.9 | 21 | 366 | 17.91 | 4.95 |
PI-3′ | 108 ± 6.6 | 2.9 ± 0.9 | 8.3 ± 1.4 | 71 | 370 | 16.83 | 5.26 |
PI-3 | 83 ± 2.8 | 2.2 ± 0.3 | 10.6 ± 2.5 | 54 | 380 | 17.41 | 5.09 |
PI-4′ | 100 ± 6.2 | 2.5 ± 0.2 | 7.5 ± 0.7 | 74 | 328 | 15.46 | 5.73 |
PI-4 | 101 ± 4.1 | 2.5 ± 0.1 | 7.5 ± 0.3 | 73 | 327 | 16.44 | 5.39 |
PI-5′ | 91 ± 9.9 | 1.1 ± 0.8 | 12.6 ± 1.0 | 77 | 354 | 15.81 | 5.60 |
PI-5 | 72 ± 3.9 | 2.1 ± 0.1 | 10 ± 1.0 | 73 | 362 | 16.09 | 5.50 |
Solvents | PI-1′ | PI-1 | PI-2′ | PI-2 | PI-3′ | PI-3 | PI-4′ | PI-4 | PI-5′ | PI-5 |
---|---|---|---|---|---|---|---|---|---|---|
DMAc a | +− | +− | − | − | − | − | ++ | +− | ++ | ++ |
DMF | ++ | +− | − | − | − | − | ++ | ++ | ++ | +− |
NMP | ++ | ++ | +− | − | +− | − | ++ | ++ | ++ | ++ |
CH2Cl2 | ++ | +− | +− | − | +− | +− | ++ | ++ | ++ | ++ |
CHCl3 | ++ | +− | +− | − | +− | − | ++ | ++ | ++ | ++ |
THF | − | − | − | − | − | − | +− | − | +− | +− |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, Z.; Wang, S.; Hou, Z.; Liu, Z.; Jin, S.; Wang, X.; Wang, D.; Zhao, X.; Zhang, Y.; Zhou, H.; et al. Soluble Polyimides Bearing (cis, trans)-Hydrogenated Bisphenol A and (trans, trans)-Hydrogenated Bisphenol A Moieties: Synthesis, Properties and the Conformational Effect. Polymers 2019, 11, 854. https://doi.org/10.3390/polym11050854
Mi Z, Wang S, Hou Z, Liu Z, Jin S, Wang X, Wang D, Zhao X, Zhang Y, Zhou H, et al. Soluble Polyimides Bearing (cis, trans)-Hydrogenated Bisphenol A and (trans, trans)-Hydrogenated Bisphenol A Moieties: Synthesis, Properties and the Conformational Effect. Polymers. 2019; 11(5):854. https://doi.org/10.3390/polym11050854
Chicago/Turabian StyleMi, Zhiming, Shuai Wang, Ziwen Hou, Zhixiao Liu, Sizhuo Jin, Xiaowen Wang, Daming Wang, Xiaogang Zhao, Yumin Zhang, Hongwei Zhou, and et al. 2019. "Soluble Polyimides Bearing (cis, trans)-Hydrogenated Bisphenol A and (trans, trans)-Hydrogenated Bisphenol A Moieties: Synthesis, Properties and the Conformational Effect" Polymers 11, no. 5: 854. https://doi.org/10.3390/polym11050854
APA StyleMi, Z., Wang, S., Hou, Z., Liu, Z., Jin, S., Wang, X., Wang, D., Zhao, X., Zhang, Y., Zhou, H., & Chen, C. (2019). Soluble Polyimides Bearing (cis, trans)-Hydrogenated Bisphenol A and (trans, trans)-Hydrogenated Bisphenol A Moieties: Synthesis, Properties and the Conformational Effect. Polymers, 11(5), 854. https://doi.org/10.3390/polym11050854