Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Electrochemistry
2.3. Microscopy (FE-SEM)
2.4. MALDI-TOF
2.5. Conductivity Characterization
3. Results
3.1. Synthesis of the Monomers
3.2. Electropolymerization of 2,2′-Bipyrrole Monomers
3.3. Characterization of 2,2′-Bipyrrole Polymers Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shirakawa, H.; Louis, E.; MacDiarmid, A.; Chiang, C.; Heeger, J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives. Chem. Commun. 1977, 578, 578–580. [Google Scholar] [CrossRef]
- Nuramdhani, I.; Jose, M.; Samyn, P.; Adriaensens, P.; Malengier, B.; Deferme, W.; De Mey, G.; Van Langenhove, L.; Nuramdhani, I.; Jose, M.; et al. Charge-Discharge Characteristics of Textile Energy Storage Devices Having Different PEDOT:PSS Ratios and Conductive Yarns Configuration. Polymers 2019, 11, 345. [Google Scholar] [CrossRef]
- Santino, L.M.; D’Arcy, J.M.; Acharya, S.; Lu, Y.; Bryan, A.M. Conducting Polymers for Pseudocapacitive Energy Storage. Chem. Mater. 2016, 28, 5989–5998. [Google Scholar] [CrossRef]
- Abdelhamid, M.E.; O’Mullane, A.P.; Snook, G.A. Storing energy in plastics: A review on conducting polymers & their role in electrochemical energy storage. RSC Adv. 2015, 5, 11611–11626. [Google Scholar] [CrossRef]
- Khanam, J.; Foo, S.; Khanam, J.J.; Foo, S.Y. Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light. Polymers 2019, 11, 383. [Google Scholar] [CrossRef]
- Shang, Z.; Dimitrov, S.D.; Yousaf, S.A.; Ashraf, R.S.; Durrant, J.R.; Tan, C.H.; Gasparini, N.; Alamoudi, M.; Holliday, S.; Wadsworth, A.; et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Saranya, K.; Rameez, M.; Subramania, A. Developments in conducting polymer based counter electrodes for dye-sensitized solar cells—An overview. Eur. Polym. J. 2015, 66, 207–227. [Google Scholar] [CrossRef]
- Li, P.; Du, D.; Guo, L.; Guo, Y.; Ouyang, J. Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J. Mater. Chem. C 2016, 4, 6525–6532. [Google Scholar] [CrossRef]
- Lin, C.T.; Zeng, X.; Yu, J.; Alam, F.; Shen, D.; Li, H.; Yao, Y.; Dai, W.; Du, S.; Jiang, N. Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding. Polymers 2017, 9, 662. [Google Scholar] [CrossRef]
- Jiang, D.; Ding, T.; Murugadoss, V.; Guo, Z.; Lin, J.; Wang, Y.; Liu, H.; Wei, R.; Shao, Q.; Wang, Z.; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites—A Review. Polym. Rev. 2019, 3724, 1. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, Y.J.; Lee, W.K.; Wu, C.C.; Lu, C.Y.; Lin, H.Y. Enhancing Optical Out-Coupling of Organic Light-Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer. Adv. Mater. 2015, 27, 4883–4888. [Google Scholar] [CrossRef]
- Sax, S.; Hermerschmidt, F.; Popovic, K.; Kinner, L.; Boeffel, C.; Burgués-Ceballos, I.; Choulis, S.A.; Lange, A.; Nau, S.; List-Kratochvil, E.J.W. Inkjet-printed embedded Ag-PEDOT:PSS electrodes with improved light out coupling effects for highly efficient ITO-free blue polymer light emitting diodes. Appl. Phys. Lett. 2017, 110, 101107. [Google Scholar] [CrossRef]
- Jang, S.-Y.; Hong, S.; Kim, N.; Lee, J.H.; Kim, A.; Park, B.; Lee, K.; Kee, S.; Jeong, S.; Kim, B.S. Highly Deformable and See-Through Polymer Light-Emitting Diodes with All-Conducting-Polymer Electrodes. Adv. Mater. 2017, 30, 1703437. [Google Scholar] [CrossRef]
- Das, T.K.; Prusty, S. Review on Conducting Polymers and Their Applications. Polym. Plast. Technol. Eng. 2012, 51, 1487–1500. [Google Scholar] [CrossRef]
- Tomczykowa, M.; Plonska-Brzezinska, M. Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers 2019, 11, 350. [Google Scholar] [CrossRef]
- Moon, J.M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron. 2018, 102, 540–552. [Google Scholar] [CrossRef]
- Malliaras, G.G.; Suiu, A.O.; Inal, S.; McCulloch, I.; Rivnay, J. Conjugated Polymers in Bioelectronics. Acc. Chem. Res. 2018, 51, 1368–1376. [Google Scholar] [CrossRef]
- Texidó, R.; Orgaz, A.; Ramos-Pérez, V.; Borrós, S. Stretchable conductive polypyrrole films modified with dopaminated hyaluronic acid. Mater. Sci. Eng. C 2017, 76, 295–300. [Google Scholar] [CrossRef]
- Guo, B.; Ma, P.X. Conducting Polymers for Tissue Engineering. Biomacromolecules 2018, 19, 1764–1782. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef]
- Chen, Y.; Amiri, A.; Boyd, J.G.; Naraghi, M. Promising Trade-Offs Between Energy Storage and Load Bearing in Carbon Nanofibers as Structural Energy Storage Devices. Adv. Funct. Mater. 2019, 1901425. [Google Scholar] [CrossRef]
- Yano, H.; Kudo, K.; Marumo, K.; Okuzaki, H. Fully soluble self-doped poly(3,4 ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm−1. Sci. Adv. 2019, 5, 9492. [Google Scholar] [CrossRef]
- Zhang, M.; Wenbo, E.; Ohkubo, K.; Sanchez-Garcia, D.; Yoon, D.W.; Sessler, J.L.; Fukuzumi, S.; Kadish, K.M. Electron-transfer and acid-base properties of a two-electron oxidized form of quaterpyrrole that acts as both an electron donor and an acceptor. J. Phys. Chem. A 2008, 112, 1633–1642. [Google Scholar] [CrossRef]
- Wenbo, E.; Ohkubo, K.; Sanchez-Garcia, D.; Zhang, M.; Sessler, J.L.; Fukuzumi, S.; Kadish, K.M. Electron-transfer oxidation properties of substituted bi-, ter-, and quaterpyrroles. J. Phys. Chem. B 2007, 111, 4320–4326. [Google Scholar] [CrossRef]
- Groenendaal, L.; Peerlings, H.; Van Dongen, J.; Havinga, E.; Vekemans, J.; Meijer, E. Well-Defined Oligo (pyrrole-2, 5-diyl) s by the Ullmann Reaction. Macromolecules 1995, 28, 116–123. [Google Scholar] [CrossRef]
- Roznyatovskiy, V.V.; Roznyatovskaya, N.V.; Weyrauch, H.; Pinkwart, K.; Tübke, J.; Sessler, J.L. Naphthobipyrrole: Versatile synthesis and electropolymerization. J. Org. Chem. 2010, 75, 8355–8362. [Google Scholar] [CrossRef]
- Roncali, J. Conjugated poly (thiophenes): Synthesis, functionalization, and applications. Chem. Rev. 1992, 92, 711–738. [Google Scholar] [CrossRef]
- Merz, A.; Anikin, S.; Lieser, B.; Heinze, J.; John, H. 3,3′-and 4,4′-dimethoxy-2,2′-bipyrroles: Highly electron-rich model compounds for polypyrrole formation. Chem. A Eur. J. 2003, 9, 449–455. [Google Scholar] [CrossRef]
- Anguera, G.; Kau, B.; Borrell, J.I.; Borro, S.; Sa, D.; Chimie, D. Quaterpyrroles as Building Blocks for the Synthesis of Expanded Porphyrins. Org. Lett. 2015, 17, 2194–2197. [Google Scholar] [CrossRef]
- Anguera, G.; Kau, B.; Borrell, J.I.; Borro, S. STable 5,5′-Substituted 2,2′-Bipyrroles: Building Blocks for Macrocyclic and Materials Chemistry. J. Org. Chem. 2017, 82, 6904–6912. [Google Scholar] [CrossRef]
- Andrieux, C.P.; Hapiot, P.; Audebert, P.; Guyard, L.; Nguyen Dinh An, M.; Groenendaal, L.; Meijer, E.W. Substituent Effects on the Electrochemical Properties of Pyrroles and Small Oligopyrroles. Chem. Mater. 1997, 9, 723–729. [Google Scholar] [CrossRef]
- Audebert, P.; Catel, J.M.; Le Coustumer, G.; Duchenet, V.; Hapiot, P. Electrochemistry and Polymerization Mechanisms of Thiophene-Pyrrole-Thiophene Oligomers and Terthiophenes. Experimental and Theoretical Modeling Studies. J. Phys. Chem. B 2002, 102, 8661–8669. [Google Scholar] [CrossRef]
- Amir, N.; Vestfrid, Y.; Chusid, O.; Gofer, Y.; Aurbach, D. Progress in nonaqueous magnesium electrochemistry. J. Power Sources 2007, 174, 1234–1240. [Google Scholar] [CrossRef]
- Reynolds, J.R.; Katritzky, A.R.; Soloducho, J.; Belyakov, S.; Sotzing, G.A.; Pyo, M. Poly[1,4-bis (pyrrol-2-yl) phenylene]: A new electrically conducting and electroactive polymer containing the bipyrrole-phenylene repeat unit. Macromolecules 1994, 27, 7225–7227. [Google Scholar] [CrossRef]
- Cosnier, S.; Holzinger, M. Design of carbon nanotube-polymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. Electrochim. Acta 2008, 53, 3948–3954. [Google Scholar] [CrossRef]
- Ledwon, P.; Brzeczek, A.; Pluczyk, S.; Jarosz, T.; Kuznik, W.; Walczak, K.; Lapkowski, M. Synthesis and electrochemical properties of novel, donor–acceptor pyrrole derivatives with 1,8-naphthalimide units and their polymers. Electrochim. Acta 2014, 128, 420–429. [Google Scholar] [CrossRef]
- Wolfart, F.; Dubal, D.P.; Vidotti, M.; Holze, R.; Gómez-Romero, P. Electrochemical supercapacitive properties of polypyrrole thin films: Influence of the electropolymerization methods. J. Solid State Electrochem. 2016, 20, 901–910. [Google Scholar] [CrossRef]
- Tanaka, K.; Shichiri, T.; Wang, S.; Yamabe, T. A study of the electropolymerization of thiophene. Synth. Met. 1988, 24, 203–215. [Google Scholar] [CrossRef]
- Gadient, J.; Groch, R.; Lind, C. An in depth study of solvent effects on yield and average molecular weight in poly(3-hexylthiophene). Polymer 2017, 115, 21–27. [Google Scholar] [CrossRef]
- Folch, I.; Borrós, S.; Amabilino, D.B.; Veciana, J. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of some conducting polymers. J. Mass Spectrom. 2000, 35, 550–555. [Google Scholar] [CrossRef]
- Li, R.L.; Lin, C.W.; Shao, Y.; Chang, C.W.; Yao, F.K.; Kowal, M.D.; Wang, H.; Yeung, M.T.; Huang, S.C.; Kaner, R.B. Characterization of aniline tetramer by MALDI TOF mass spectrometry upon oxidative and reductive cycling. Polymers 2016, 8, 401. [Google Scholar] [CrossRef] [PubMed]
- Otero, T.F. Biomimetic conducting polymers: Synthesis, materials, properties, functions, and devices. Polym. Rev. 2013, 53, 311–351. [Google Scholar] [CrossRef]
- Glaudell, A.M.; Cochran, J.E.; Patel, S.N.; Chabinyc, M.L. Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 2015, 5. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, Z.; Yang, F.K.; Zhao, B. A Facile In Situ Approach to Polypyrrole Functionalization Through Bioinspired Catechols. Adv. Funct. Mater. 2015, 25, 1588–1597. [Google Scholar] [CrossRef]
- Tabačiarová, J.; Mičušík, M.; Fedorko, P.; Omastová, M. Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym. Degrad. Stab. 2015, 120, 392–401. [Google Scholar] [CrossRef]
- Zhao, D.; Li, L.; Niu, W.; Chen, S. Highly conductive polythiophene films doped with chloroauric acid for dual-mode sensing of volatile organic amines and thiols. Sens. Actuators B Chem. 2017, 243, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Saekow, S.; Amornkitbamrung, V.; Maiaugree, W.; Keothongkham, K.; Pimanpang, S.; Jarernboon, W. Electrochemically Deposited Polypyrrole for Dye-Sensitized Solar Cell Counter Electrodes. Int. J. Photoenergy 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Roncali, J.; Garnier, F.; Lemaire, M.; Garreau, R. Poly mono-, bi-and trithiophene: Effect of oligomer chain length on the polymer properties. Synth. Met. 1986, 15, 323–331. [Google Scholar] [CrossRef]
Sample | Ep,a vs. Fc/V | Ref. |
---|---|---|
1H,-pyrrole | 0.85 | [29] |
1H,1′H-2,2′-bipyrrole | 0.6 | [29] |
1H,1′H,1″H-2,2′:5′,2″-terpyrrole | 0.28 | [29] |
1H,1′H,1″H,1‴H-2,2′:5′,2″:5″,2‴-quaterpyrrole | 0.16 | [29] |
1a | 0.17 | - |
1b | 0.14 | - |
1c | 0.25 | - |
Monomer | Mwa | Mna | PDI a | Absorbance b | Emission c | Quantum Yield d |
---|---|---|---|---|---|---|
1a | 2300 | 1100 | 2.18 | 369 | 512 | <1% |
1b | 2600 | 1100 | 2.46 | 408 | 499 | 0.04 |
1c | 2300 | 1000 | 2.21 | 457 | 507 | 0.12 |
Sample | S/cm |
---|---|
1b | 5 × 10−3 |
1c | 3 × 10−4 |
1b (iodine doped) | 8 × 10−2 |
1c (iodine doped) | 2 × 10−3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Texidó, R.; Anguera, G.; Colominas, S.; Borrós, S.; Sánchez-García, D. Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability. Polymers 2019, 11, 1068. https://doi.org/10.3390/polym11061068
Texidó R, Anguera G, Colominas S, Borrós S, Sánchez-García D. Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability. Polymers. 2019; 11(6):1068. https://doi.org/10.3390/polym11061068
Chicago/Turabian StyleTexidó, Robert, Gonzalo Anguera, Sergi Colominas, Salvador Borrós, and David Sánchez-García. 2019. "Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability" Polymers 11, no. 6: 1068. https://doi.org/10.3390/polym11061068
APA StyleTexidó, R., Anguera, G., Colominas, S., Borrós, S., & Sánchez-García, D. (2019). Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability. Polymers, 11(6), 1068. https://doi.org/10.3390/polym11061068