Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l–lactide) (PLLA)–Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization
Abstract
:1. Introduction
2. Experimental Materials
2.1. Preparation of Magnesium Oxide Whiskers
2.2. In-Situ Polymerized PLLA–MgO Composites
2.3. Molecular Weight (Mη) Measurements
2.4. Characterization
2.5. In Vivo Experimental
2.6. Animal Models
2.7. Routine Pathological Examinations
3. Results and Discussion
3.1. Molecular Weight
3.2. X-Ray Diffraction
3.3. Fourier Transform Infrared Spectroscopy
3.4. Scanning Electron Microscopy
3.5. Synthesized Mechanism of PLLA–MgO Composite
3.6. Crystallization Property of PLLA–MgO Composites
3.7. Mechanical Properties of PLLA–MgO Composites
3.8. In Vivo Degradation of PLLA and PLLA1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bose, S.; Roy, M. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Sabir, M.I.; Xu, X.; Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009, 44, 5713–5724. [Google Scholar] [CrossRef]
- Nampoothiri, K.M.; Nair, R.N. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.Z.; Han, X.X.; Niu, W.N.; Cameron, R.E. A Model for Biodegradation of Composite Materials Made of Polyesters and Tricalcium Phosphates. Biomaterials 2011, 32, 2248–2255. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Kim, S.S.; Kim, Y.H.; Kim, S.H.; Kim, S.H. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. Biomaterials 2005, 26, 6314–6322. [Google Scholar] [CrossRef] [PubMed]
- Samadi, S.; Moradkhani, M.; Beheshti, H.; Irani, M. Aliabadi, Fabrication of chitosan/poly (lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. Int. J. Biol. Macromol. 2017, 97, 744–751. [Google Scholar]
- Damadzadeh, B.; Jabari, H.; Skrifvars, M.; Airola, K.; Moritz, N.; Vallittu, P.K. Effect of ceramic filler content on the mechanical and thermal behaviour of poly-l-lactic acid and poly-l-lactic-co-glycolic acid composites for medical applications. J. Mater. Sci. Mater. Med. 2010, 21, 2523–2531. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Sun, X.Z. Preparation and characterization of polymer−inorganic nanocomposites by in situ melt polycondensation of l-lactic acid and surface-hydroxylated mgo. Biomacromolecules 2010, 11, 1847–1855. [Google Scholar] [CrossRef]
- Vieira, A.C.; Vieira, J.C.; Ferra, J.M.; Magalhaes, F.D.; Guedes, R.M.; Marques, A.T.; Mech, J. Mechanical study of PLA-PCL fibers during in vitro degradation. J. Mech. Behav. Biomed. Mater. 2011, 4, 451–460. [Google Scholar] [CrossRef]
- Jiang, L.; Wolcott, M.P.; Zhang, J. Study of biodegradable polylactide/poly (butylene adipate-co- terephthalate) blends. Biomacromolecules 2006, 7, 199–207. [Google Scholar] [CrossRef]
- Jin, L.J.; Zhang, W.; Wolcott, M.P. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer 2007, 48, 7632–7644. [Google Scholar]
- Afrifah, K.A.; Matuana, L.M. Impact modification of polylactide with a biodegradable ethylene/acrylate copolymer. Macromol. Mater. Eng. 2010, 295, 802–811. [Google Scholar] [CrossRef]
- Coltelli, M.B.; Bronco, S.; Chine, C. The effect of free radical reactions on structure and properties of poly (lactic acid) (PLA) based blends. Polym. Degrad. Stab. 2010, 95, 332–341. [Google Scholar] [CrossRef]
- Wang, L.; Ma, W.; Gross, R.A.; McCarthy, S.P. Reactive compatibilization of biodegradable blends of poly (lactic acid) and poly(Ɛ-caprolactone). Polym. Degrad. Stab. 1998, 20, 161–168. [Google Scholar] [CrossRef]
- Chang, H.K.; Cho, Y.J.; Joung, Y.K.; Ahn, D.J.; Han, D.K. Poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation. Small 2014, 10, 3783–3794. [Google Scholar]
- Luo, Y.B.; Wang, X.L.; Wang, Y.Z. Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polym. Degrad. Stab 2012, 97, 721–728. [Google Scholar] [CrossRef]
- Verrier, S.; Blaker, J.J.; Maquet, V.; Hench, L.L. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: An in vitro cell biology assessment. Biomaterials 2004, 25, 3013–3021. [Google Scholar] [CrossRef]
- Maglio, G.; Migliozzi, A.; Immirzi, B.; Volpe, M.G.; Palumbo, R. Compatibilizedpoly (Ɛ-caprolactone)/poly(L-lactide) blends for biomedical uses. Macromol. Rapid Commun. 1999, 20, 236–238. [Google Scholar] [CrossRef]
- Takeoka, Y.; Hayashi, M.; Sugiyama, N.; Yoshizawa-Fujita, M.; Aizawa, M.; Rikukawa, M. In situ preparation of poly(l-lacticacid-co-glycolic acid)/hydroxyapatite composites as artificial bone materials. Polym. J. 2015, 47, 164–170. [Google Scholar] [CrossRef]
- Chen, M.F.; Zhao, Y.; Liu, B.; You, C. Effects of MgO whiskers on mechanical properties and crystallization behavior of PLLA/MgO composites. Mater. Des. 2016, 89, 573–581. [Google Scholar]
- Ho, C.H.; Wang, C.H.; Lin, C.I.; Lee, Y.D. Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 2008, 49, 3902–3910. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Q.; Ren, J.; Wang, L.J. Impact toughness and ductility enhancement of biodegradable poly(lactic acid)/poly(ɛ-caprolactone) blends via addition of glycidyl methacrylate. Int. J. Mol. Sci. 2009, 44, 250–256. [Google Scholar]
- Pan, P.; Liang, Z.; Cao, A.; Inoue, Y. Layered Metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl. Mater. Interfaces 2009, 1, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huneault, M.A. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 2007, 48, 6855–6866. [Google Scholar] [CrossRef]
- Zhou, H.; Lawrence, J.G.; Bhaduri, S.B. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review. Acta Biomater. 2012, 8, 1999–2016. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Urayama, H.; Kanamori, T.; Fukushima, K.; Kimura, Y. Controlled crystal nucleation in the melt-crystallization of poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Polymer 2003, 44, 5635–5641. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, Y.D.; Song, W.H.; Luan, J.B.; Wen, X.X.; Wu, Z.J.; Chen, X.H.; Wang, Q.; Guo, S.L. Overview of bacterial cellulose production and application. Carbonhydr. Polym. 2014, 102, 762–771. [Google Scholar] [CrossRef]
- Li, Q.H.; Zhou, Q.H.; Deng, D.; Yu, Q.Z.; Gu, L.; Gong, K.D.; Xu, K.H. Enhanced thermal and electrical properties of poly(d,l-lactide)/multi-walled carbon nanotubes composites by in-situ polymerization. Trans. Nonferr. Met. Soc. China 2013, 23, 1421–1427. [Google Scholar] [CrossRef]
- Liu, Y.L.; Shao, J.; Sun, J.R.; Bian, X.C.; Li, D.; Xiang, F.S.; Sun, B.; Chen, Z.; Li, G.; Chen, X.S. Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA. Polym. Degrad. Stab. 2014, 101, 10–17. [Google Scholar] [CrossRef]
- Anderson, P.J.; Horlock, R.F. Thermal decomposition of magnesium hydroxide. Trans. Faraday Soc. 1962, 58, 1993–2004. [Google Scholar] [CrossRef]
- Abadleh, H.A.; Hosney, H.A.; Grassian, V.H. Oxide and carbonate surfaces as environmental interfaces: The importance of water in surface composition and surface reactivity. J. Mol. Catal. A Chem. 2005, 228, 47–54. [Google Scholar] [CrossRef]
- Jia, J.P.; Yang, J.J.; Zhao, Y.; Liang, H.; Chen, M.F. The crystallization behaviors and mechanical properties of poly(l-lactic acid)/magnesium oxide nanoparticle composites. RSC Adv. 2016, 6, 43855–43863. [Google Scholar] [CrossRef]
- Kum, C.H.; Cho, Y.; Seo, S.H.; Joung, Y.K.; Choi, J.; Park, K.; Park, Y.K.; Ahn, D.J.; Han, D.K. Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. Small 2013, 1, 2764–2772. [Google Scholar] [CrossRef]
- Tsuji, H.; Nakahara, K. Poly(l-lactide). IX. Hydrolysis in Acid Media. J. Appl. Polym. Sci. 2002, 86, 186–194. [Google Scholar] [CrossRef]
- Silva, E.; Vasconcellos, L.M.R.; Rodrigues, B.V.M.; Dos Santos, D.M.; Campana-Filho, S.P.; Marciano, F.R.; Webster, T.J.; Lobo, A.O. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Mater. Sci. Eng. C 2017, 73, 31–39. [Google Scholar]
- Pinese, C.; Gagnieu, C.; Nottelet, B.; Rondot-Couzin, C.; Hunger, S.; Coudane, J.; Garric, X. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
Abbreviation of Samples | Sample | Weight of Lactide (g) | Weight of MgO Whisker (g) | Molecular Weight (×104) | Weight of Sn(oct)2 (g) |
---|---|---|---|---|---|
PLLA | PLLA | 10 | 0 | 36.0 ± 1.0 | 1.0 |
PLLA0.5 | PLLA–0.5 wt% MgO | 10 | 0.05 | 34.3 ± 0.8 | 1.0 |
PLLA1 | PLLA–1.0 wt% MgO | 10 | 0.1 | 34.6 ± 1.3 | 1.0 |
PLLA1.5 | PLLA–1.5 wt% MgO | 10 | 0.15 | 26.3 ± 1 | 1.0 |
Implantation Time (Months) | PLLA | PLLA1 | Molecular Weight (×104) | |
---|---|---|---|---|
PLLA | PLLA1 | |||
1 | C1 | E1 | 29 ± 1 | 32.5 ± 1 |
2 | C2 | E2 | 21 ± 1.3 | 23 ± 0.8 |
3 | C3 | E3 | 18 ± 0.9 | 16 ± 0.6 |
6 | C4 | E4 | 16 ± 0.5 | 11.3 ± 0.5 |
Sample | ΔHm (J/g) | ΔHrc (J/g) | Xc (%) | Tg (°C) | Tm (°C) | Tcc (°C) |
---|---|---|---|---|---|---|
PLLA | 65.63 | −40.56 | 27.6 | 63.3 | 176.5 | 110.8 |
PLLA0.5 | 68.09 | −3.3 | 69.3 | 67.6 | 177 | 101.5 |
PLLA1 | 67.80 | −42.54 | 37.6 | 64.7 | 175.3 | 115 |
PLLA1.5 | 66.94 | −44.13 | 34.6 | 64.2 | 174.8 | 113 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Zhao, Y.; Yang, J.; Li, X.; Yang, X.; Sasikumar, Y.; Zhou, Z.; Chen, M. Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l–lactide) (PLLA)–Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization. Polymers 2019, 11, 1123. https://doi.org/10.3390/polym11071123
Liang H, Zhao Y, Yang J, Li X, Yang X, Sasikumar Y, Zhou Z, Chen M. Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l–lactide) (PLLA)–Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization. Polymers. 2019; 11(7):1123. https://doi.org/10.3390/polym11071123
Chicago/Turabian StyleLiang, Hui, Yun Zhao, Jinjun Yang, Xiao Li, Xiaoxian Yang, Yesudass Sasikumar, Zhiyu Zhou, and Minfang Chen. 2019. "Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l–lactide) (PLLA)–Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization" Polymers 11, no. 7: 1123. https://doi.org/10.3390/polym11071123
APA StyleLiang, H., Zhao, Y., Yang, J., Li, X., Yang, X., Sasikumar, Y., Zhou, Z., & Chen, M. (2019). Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l–lactide) (PLLA)–Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization. Polymers, 11(7), 1123. https://doi.org/10.3390/polym11071123