Anionic Polymerization of β-Butyrolactone Initiated with Sodium Phenoxides. The Effect of the Initiator Basicity/Nucleophilicity on the ROP Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. General Polymerization Procedure
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Steinbüchel, A. Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol. Biosci. 2001, 1, 1–24. [Google Scholar] [CrossRef]
- Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem Technol Biotechnol. 2007, 82, 233–247. [Google Scholar] [CrossRef]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeter. Biodegr. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Shabina, M.; Afzal, M.; Hameed, S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chem. Lett. Rev. 2015, 8, 56–77. [Google Scholar] [Green Version]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Hill, D.J.; Kowalczuk, M.; Johnston, B.; Adamus, G.; Iorere, V.; Radecka, I. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery. Int. J. Mol. Sci. 2016, 17, 1157. [Google Scholar] [CrossRef] [PubMed]
- Piddubnyak, V.; Kurcok, P.; Matuszowicz, A.; Głowala, M.; Fiszer-Kierzkowska, A.; Jedliński, Z.; Juzwa, M.; Krawczyk, Z. Oligo-3-hydroxybutyrates as potential carriers for drug delivery. Biomaterials 2004, 25, 5271–5279. [Google Scholar] [CrossRef]
- Suriyamongkol, P.; Weselake, R.; Narine, S.; Moloney, M.; Shah, S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—A review. Biotechnol. Adv. 2007, 25, 148–175. [Google Scholar] [CrossRef]
- Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progr. Polym. Sci. 2012, 37, 237–280. [Google Scholar] [CrossRef]
- Tang, X.; Chen, E.Y.-X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 2018, 9, 2345. [Google Scholar] [CrossRef]
- Fang, J.; Tschan, M.J.L.; Roisnel, T.; Trivelli, X.; Gauvin, R.M.; Thomas, C.M.; Maron, L. Yttrium catalysts for syndioselective β-butyrolactone polymerization: on the origin of ligand-induced stereoselectivity. Polym. Chem. 2013, 4, 360–367. [Google Scholar] [CrossRef]
- Rieth, L.R.; Moore, D.R.; Lobkovsky, E.B.; Coates, G.W. Single-Site β-Diiminate Zinc Catalysts for the Ring-Opening Polymerization of β-Butyrolactone and β-Valerolactone to Poly(3-hydroxyalkanoates). J. Am. Chem. Soc. 2002, 124, 15239–15248. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Lin, C.-H.; Ko, B.-T.; Ho, R.-M. Ring-Opening Polymerization of β-Butyrolactone Catalyzed by Efficient Magnesium and Zinc Complexes Derived from Tridentate Anilido-Aldimine Ligand. J. Polym. Sci. Polym. Chem. 2010, 48, 5339–5347. [Google Scholar] [CrossRef]
- Okamoto, Y. Cationic Ring-Opening Polymerization of Lactones in the presence of alcohol. Makromol. Chem. Macromol. Symp. 1991, 42/43, 117–133. [Google Scholar] [CrossRef]
- Jaipuri, F.A.; Bower, B.D.; Pohl, N.L. Protic acid-catalyzed polymerization of β-lactones for the synthesis of chiral polyesters. Tetrahedron: Asymmetr. 2003, 14, 3249–3252. [Google Scholar] [CrossRef]
- Jedliński, Z.; Kurcok, P.; Lenz, R.W. First Facile Synthesis of Biomimetic Poly-(R)-3-hydroxybutyrate via Regioselective Anionic Polymerization of (S)-β-Butyrolactone. Macromolecules 1998, 31, 6718–6720. [Google Scholar] [CrossRef]
- Jedliński, Z. Regioselective Ring-Opening Anionic Polymerization of β-lactones. Macromol. Symp. 1998, 132, 377–383. [Google Scholar] [CrossRef]
- Jedliński, Z.; Kowalczuk, M.; Kurcok, P.; Adamus, G.; Matuszowicz, A.; Sikorska, W.; Gross, R.A.; Xu, J.; Lenz, R.W. Stereochemical Control in the Anionic Polymerization of β-Butyrolactone Initiated with Alkali-Metal Alkoxides. Macromolecules 1996, 29, 3773–3777. [Google Scholar] [CrossRef]
- Kowalczuk, M.; Kurcok, P.; Główkowski, W.; Jedliński, Z. New Reactions of Potassium Naphthalenide with β-, γ- and β-Lactones: An Efficient Route to α-Alkyl γ- and β-Lactones and α,β-Unsaturated Carboxylic Acid Esters. J. Org. Chem. 1992, 57, 391–393. [Google Scholar] [CrossRef]
- Khalil, A.; Cammas-Marion, S.; Coulembier, O. Organocatalysis Applied to the Ring-Opening Polymerization of β-Lactones: A Brief Overview. J. Polym. Sci. Part A 2019, 57, 657–672. [Google Scholar] [CrossRef]
- Jedliński, Z.; Kowalczuk, M. Novel Degradable Engineering Polyesters-Synthesis and Applications. Intern. J. Polymeric Mater. 1994, 24, 253–261. [Google Scholar] [CrossRef]
- Kurcok, P.; Matuszowicz, A.; Jedliński, Z. Anionic polymerization of β-lactones initiated with potassium hydride. A convenient route to polyester macromonomers. Macromol. Rapid Commun. 1995, 16, 201–206. [Google Scholar] [CrossRef]
- Lenz, R.W.; Jedliński, Z. Anionic and Coordination Polymerization of 3-butyrolactone. Macromol. Symp. 1996, 107, 149–161. [Google Scholar] [CrossRef]
- Jaffredo, C.G.; Carpentier, J.-F.; Guillaume, S.M. Controlled ROP of β-Butyrolactone Simply Mediated by Amidine, Guanidine, and Phosphazene Organocatalysts. Macromol. Rapid Commun. 2012, 22, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Jaffredo, C.G.; Carpentier, J.-F.; Guillaume, S.M. Organocatalyzed controlled ROP of β-lactones towards poly(hydroxyalkanoate)s: from β-butyrolactone to benzyl β-malolactone polymers. Polym. Chem. 2013, 4, 3837–3850. [Google Scholar] [CrossRef]
- Moins, S.; Henoumont, C.; De Winter, J.; Khalil, A.; Laurent, S.; Cammas-Marion, S.; Coulembier, O. Reinvestigation of the Mechanism of Polymerization of β-Butyrolactone from 1,5,7-Triazabicyclo [4.4.0]dec-5-ene. Polym. Chem. 2018, 9, 1840–1847. [Google Scholar] [CrossRef]
- Kawalec, M.; Śmiga-Matuszowicz, M.; Kurcok, P. Counterion and solvent effects on the anionic polymerization of β-butyrolactone initiated with acetic acid salts. Eur. Polym. J. 2008, 44, 3556–3563. [Google Scholar] [CrossRef]
- Kurcok, P.; Jedliński, Z.; Kowalczuk, M. Reactions of β-Lactones with Potassium Alkoxides and Their Complexes with 18-Crown-6 in Aprotic Solvents. J. Org. Chem. 1993, 58, 4219–4220. [Google Scholar] [CrossRef]
- Juzwa, M.; Jedliński, Z. Novel Synthesis of Poly(3-hydroxybutyrate). Macromolecules 2006, 39, 4627–4630. [Google Scholar] [CrossRef]
- Kurcok, P.; Śmiga, M.; Jedliński, Z. β-Butyrolactone Polymerization Initiated with Tetrabutylammonium Carboxylates: A Novel Approach to Biomimetic Polyester Synthesis. J. Polym. Sci. Polym. Chem. 2002, 40, 2184–2189. [Google Scholar] [CrossRef]
- Adamus, G.; Kowalczuk, M. Anionic Ring-Opening Polymerization of β-Alkoxymethyl-Substituted β-Lactones. Biomacromolecules 2008, 9, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Jedliński, Z.; Kurcok, P.; Kowalczuk, M.; Matuszowicz, A.; Dubois, P.; Jerome, R.; Kricheldor, H.R. Anionic Polymerization of Pivalolactone Initiated by Alkali Metal Alkoxides. Macromolecules 1996, 28, 7276–7280. [Google Scholar] [CrossRef]
- Kurcok, P.; Kowalczuk, M.; Hennek, K.; Jedliński, Z. Anionic Polymerization of β-Lactones Initiated with Alkali-Metal Alkoxides: Reinvestigation of the Polymerization Mechanism. Macromolecules 1992, 25, 2017–2020. [Google Scholar] [CrossRef]
- Kurcok, P.; Kowalczuk, M.; Jedliński, Z. Response to “On the Ambident Reactivity of β-Lactones in Their Reactions with Alcoholates Initiating Polymerization”. Macromolecules 1994, 27, 4833–4835. [Google Scholar] [CrossRef]
- Grobelny, Z.; Matlengiewicz, M.; Skrzeczyna, K.; Swinarew, A.; Golba, S.; Jurek-Suliga, J.; Michalak, M.; Swinarew, B. Ring-Opening Polymerization of Lactones Initiated with Metal Hydroxide-Activated Macrocyclic Ligands: Determination of Mechanism and Structure of Polymers. Int. J. Polym. Anal. Charact. 2015, 20, 457–468. [Google Scholar] [CrossRef]
- Grobelny, Z.; Golba, S.; Jurek-Suliga, J. Ring opening polymerization of β-butyrolactone in the presence of alkali metal salts: investigation of initiation course and determination of polymers structure by MALDI-TOF mass spectrometry. Polym. Bull. 2018. [Google Scholar] [CrossRef]
- Kawalec, M.; Coulembier, O.; Gerbaux, P.; Sobota, M.; De Winter, J.; Dubois, P.; Kowalczuk, M.; Kurcok, P. Traces do matter—Purity of 4-methyl-2-oxetanone and its effect on anionic ring-opening polymerization as evidenced by phosphazene superbase catalysis. React. Funct. Polym. 2012, 72, 509–520. [Google Scholar] [CrossRef]
- Bordwell pKa Table (Acidity in DMSO). Available online: https://www.chem.wisc.edu/areas/reich/pkatable/ (accessed on 12 June 2019).
- Kawalec, M.; Adamus, G.; Kurcok, P.; Kowalczuk, P.; Foltran, I.; Focarete, L.; Scandola, M. Carboxylate induced degradation of poly(3-hydroxybutyrate)s. Biomacromolecules 2007, 8, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Kawalec, M.; Sobota, M.; Scandola, M.; Kowalczuk, M.; Kurcok, P. A convenient route to PHB macromonomers via anionically controlled moderate-temperature degradation of PHB. J. Polym. Sci., Part A 2010, 48, 5490–5497. [Google Scholar] [CrossRef]
- Grobelny, Z.; Stolarzewicz, A.; Morejko, B.; Pisarski, W.; Maercker, A.; Skibinski, A.; Krompiec, S.; Rzepa, J. C–O and Not C–C Bond Cleavage Starts the Polymerization of b-Butyrolactone with Potassium Anions of Alkalide. Macromolecules 2006, 39, 6832–6837. [Google Scholar] [CrossRef]
- Borgi, H.B.; Dunitz, J.D.; Lehn, J.M.; Wipff, G. Stereochemistry of reactions paths at carbonyl centres. Tetrahedron 1974, 30, 1563–1572. [Google Scholar] [CrossRef]
Entry b | Initiator | Mn,th d [g·mol−1] | Mn,NMR e [g·mol−1] | Mn,SEC [g·mol−1] | Đ |
---|---|---|---|---|---|
1 | sodium p-nitrophenoxide | 1100 | 1350 | 1300 | 1.19 |
2 | sodium p-chlorophenoxide | 1100 | 1150 | 1100 | 1.25 |
3 | sodium 1-naphtoxide | 1100 | 800 | 800 | 1.22 |
4 | sodium phenoxide | 1100 | 900 | 800 | 1.21 |
5 | sodium p-methoxyphenoxide | 1100 | 850 | 950 | 1.13 |
6 | sodium p-nitrophenoxide | 10000 | 3400 | 3800 | 1.62 |
7 | sodium p-chlorophenoxide | 10000 | 3050 | 4400 | 1.62 |
8 | sodium 1-naphtoxide | 10000 | 3000 | 4100 | 1.76 |
9 | sodium phenoxide | 10000 | 2400 | 4600 | 1.90 |
10 | sodium p-methoxyphenoxide | 10000 | 3100 | 4100 | 1.78 |
11 c | sodium phenoxide | 10000 | 7200 | 10200 | 1.27 |
12 c | sodium p-nitrophenoxide | 10000 | 7000 | 9100 | 1.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domiński, A.; Konieczny, T.; Zięba, M.; Klim, M.; Kurcok, P. Anionic Polymerization of β-Butyrolactone Initiated with Sodium Phenoxides. The Effect of the Initiator Basicity/Nucleophilicity on the ROP Mechanism. Polymers 2019, 11, 1221. https://doi.org/10.3390/polym11071221
Domiński A, Konieczny T, Zięba M, Klim M, Kurcok P. Anionic Polymerization of β-Butyrolactone Initiated with Sodium Phenoxides. The Effect of the Initiator Basicity/Nucleophilicity on the ROP Mechanism. Polymers. 2019; 11(7):1221. https://doi.org/10.3390/polym11071221
Chicago/Turabian StyleDomiński, Adrian, Tomasz Konieczny, Magdalena Zięba, Magdalena Klim, and Piotr Kurcok. 2019. "Anionic Polymerization of β-Butyrolactone Initiated with Sodium Phenoxides. The Effect of the Initiator Basicity/Nucleophilicity on the ROP Mechanism" Polymers 11, no. 7: 1221. https://doi.org/10.3390/polym11071221
APA StyleDomiński, A., Konieczny, T., Zięba, M., Klim, M., & Kurcok, P. (2019). Anionic Polymerization of β-Butyrolactone Initiated with Sodium Phenoxides. The Effect of the Initiator Basicity/Nucleophilicity on the ROP Mechanism. Polymers, 11(7), 1221. https://doi.org/10.3390/polym11071221