Protic Imidazolium Polymer as Ion Conductor for Improved Oxygen Evolution Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Poly(1-vinylimidazole-co-styrene) (PS-b-PVIm)
2.3. Protonation of PS-b-PVIm
2.4. Characterizations
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Material Properties
3.2. Electrocatalytic Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Lal, S.; Janardhanan, V.M.; Sahu, K.C.; Deepa, M. Ethanol based fuel cell on paper support. J. Power Sources 2018, 396, 725–733. [Google Scholar] [CrossRef]
- Fukuzumi, S. Production of liquid solar fuels and their use in fuel cells. Joule 2017, 1, 689–738. [Google Scholar] [CrossRef]
- Hickner, M.A.; Pivovar, B.S.; Hickner, M. The Chemical and Structural Nature of Proton Exchange Membrane Fuel Cell Properties. Fuel Cells 2005, 5, 213–229. [Google Scholar] [CrossRef]
- Van Der Ven, A.; Puchala, B.; Nagase, T. Ti- and Zr-based metal-air batteries. J. Power Sources 2013, 242, 400–404. [Google Scholar] [CrossRef]
- Capsoni, D.; Bini, M.; Ferrari, S.; Quartarone, E.; Mustarelli, P. Recent advances in the development of Li–air batteries. J. Power Sources 2012, 220, 253–263. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J.; Sunarso, J.; Zhou, C.; Liu, B.; Shen, Y.; Zhou, W.; Shao, Z. Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. Electrochim. Acta 2018, 282, 324–330. [Google Scholar] [CrossRef]
- Bandal, H.; Reddy, K.K.; Chaugule, A.; Kim, H. Iron-based heterogeneous catalysts for oxygen evolution reaction; change in perspective from activity promoter to active catalyst. J. Power Sources 2018, 395, 106–127. [Google Scholar] [CrossRef]
- Matias, T.A.; Parussulo, A.L.; Benavides, P.A.; Guimaraes, R.R.; Dourado, A.H.; Nakamura, M.; De Torresi, S.I.C.; Bertotti, M.; Araki, K. Polymeric binuclear ruthenium complex as efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2018, 283, 18–26. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.; Song, D.H.; Oh, S.K.; Chang, K.J.; Cho, E.A. Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Appl. Catal. B Environ. 2018, 227, 340–348. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 35, 4245–4270. [Google Scholar] [CrossRef]
- Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science 2011, 334, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Amanchukwu, C.V.; Harding, J.R.; Shao-Horn, Y.; Hammond, P.T. Understanding the Chemical Stability of Polymers for Lithium–Air Batteries. Chem. Mater. 2015, 27, 550–561. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, X.; Vukmirović, N.; Xun, S.; Das, P.K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A.; Wang, L.-W.; et al. Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes. J. Am. Chem. Soc. 2013, 135, 12048–12056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V.S.; Yang, W.; Liu, G. Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 2565–2571. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Haro, M.; Guétaz, L.; Printemps, T.; Morin, A.; Escribano, S.; Jouneau, P.-H.; Bayle-Guillemaud, P.; Chandezon, F.; Gebel, G. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 2014, 5, 5229. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.; Park, Y.-C.; Kakinuma, K.; Iiyama, A.; Uchida, M. Effects of Both Oxygen Permeability and Ion Exchange Capacity for Cathode Ionomers on the Performance and Durability of Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2018, 165, F3063–F3071. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Kudo, K.; Kitano, N.; Morimoto, Y. Molecular Dynamics Simulations on O 2 Permeation through Nafion Ionomer on Platinum Surface. Electrochim. Acta 2016, 188, 767–776. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Li, J. Ionic liquids in surface electrochemistry. Phys. Chem. Chem. Phys. 2010, 12, 1685. [Google Scholar] [CrossRef]
- Pârvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev. 2007, 107, 2615–2665. [Google Scholar] [CrossRef] [PubMed]
- Hapiot, P.; Lagrost, C. Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chem. Rev. 2008, 108, 2238–2264. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Endres, F.; Macfarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Greaves, T.L.; Drummond, C.J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Lu, X.; Aldous, L.; Zhao, C. Oxygen Reduction Reaction in Room Temperature Protic Ionic Liquids. J. Phys. Chem. C 2013, 117, 18334–18342. [Google Scholar] [CrossRef]
- Snyder, J.; Fujita, T.; Chen, M.W.; Erlebacher, J.; Chen, M. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat. Mater. 2010, 9, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Klyushin, A.; Huang, X.; Jones, T.; Teschner, D.; Girgsdies, F.; Rodenas, T.; Schlögl, R.; Heumann, S. Cobalt-bridged ionic liquid polymer on a carbon nanotube for enhanced oxygen evolution reaction activity. Angew. Chem. Int. Ed. 2018, 57, 3514–3518. [Google Scholar] [CrossRef]
- Ji, S.; Li, T.; Gao, Z.-D.; Song, Y.-Y.; Xu, J.-J. Boosting the oxygen evolution reaction performance of CoS2 microspheres by subtle ionic liquid modification. Chem. Commun. 2018, 54, 8765–8768. [Google Scholar] [CrossRef]
- Chinnappan, A.; Bandal, H.; Ramakrishna, S.; Kim, H. Facile synthesis of polypyrrole/ionic liquid nanoparticles and use as an electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2018, 335, 215–220. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, F.; Zhang, H.; Tang, H.; Pan, M.; Fang, P. Improving oxygen reduction performance by using protic poly(ionic liquid) as proton conductor. ACS Appl. Mater. Interface 2019, 11, 6111–6117. [Google Scholar] [CrossRef]
- Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: Syntheses and applications. Chem. Soc. Rev. 2017, 46, 1124–1159. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036. [Google Scholar] [CrossRef]
- Peron, J.; Shi, Z.; Holdcroft, S. Hydrocarbon proton conducting polymers for fuel cell catalyst layers. Energy Environ. Sci. 2011, 4, 1575–1591. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Rühe, J. Interaction of Strong Polyelectrolytes with Surface-Attached Polyelectrolyte Brushes−Polymer Brushes as Substrates for the Layer-by-Layer Deposition of Polyelectrolytes. Macromolecular 2003, 36, 6593–6598. [Google Scholar] [CrossRef]
- Petrak, K.L. Reactivity of some vinylimidazoles towards other vinyl monomers in radical copolymerization. J. Polym. Sci. Part C: Polym. Lett. 1978, 16, 393–399. [Google Scholar] [CrossRef]
- Huang, K.; Song, T.; Morales-Collazo, O.; Jia, H.; Brennecke, J.F. Enhancing Pt/C Catalysts for the Oxygen Reduction Reaction with Protic Ionic Liquids: The Effect of Anion Structure. J. Electrochem. Soc. 2017, 164, F1448–F1459. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, X.; Tang, H.; Cai, H.; Pan, M.; Zhang, H.; Luo, J.; Zhu, Z. Protic ionic liquid modified electrocatalyst enables robust anode under cell reversal condition. J. Power Sources 2017, 351, 138–144. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, C.; Chen, G.; Zheng, N.; Xie, Q. A graphene–platinum nanoparticles–ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 6923–6927. [Google Scholar] [CrossRef]
- Doyle, R.L.; Godwin, I.J.; Brandon, M.P.; Lyons, M.E.G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 2013, 15, 13737–13783. [Google Scholar] [CrossRef]
- Bandal, H.A.; Jadhav, A.R.; Tamboli, A.H.; Kim, H. Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim. Acta 2017, 249, 253–262. [Google Scholar] [CrossRef]
- Zheng, Y.R.; Gao, M.R.; Gao, Q.; Li, H.H.; Xu, J.; Wu, Z.Y.; Yu, S.H. An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation. Small 2015, 11, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Yeo, B.S.; Bell, A.T. Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593. [Google Scholar] [CrossRef] [PubMed]
- Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J.K.; Bell, A.T. Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. J. Am. Chem. Soc. 2013, 135, 13521–13530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Molar Ratio of VIm/Sty | Vim (mL) | Sty (mL) | Toluene (mL) | AIBN (mg) |
---|---|---|---|---|
4:1 | 36.20 | 13.16 | 60.72 | 0.048 |
6:1 | 54.29 | 13.16 | 84.50 | 0.067 |
8:1 | 72.39 | 13.16 | 108.28 | 0.086 |
VIm:Sty:HTFSI in Feed (Molar Ratio) | Elemental Analysis Results (wt%) | VIm:Sty:TFSI in Ionomer (Molar Ratio) | |||
---|---|---|---|---|---|
C | H | N | S | ||
4:1:4 | 47.05 | 1.95 | 7.72 | 11.19 | 1.0:1.75:1.0 |
6:1:6 | 36.04 | 1.69 | 9.00 | 13.81 | 1.1:1.0:1.1 |
8:1:8 | 34.19 | 1.73 | 9.40 | 14.20 | 1.4:1.0:1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Yang, M.; Zhang, S.; Fang, P. Protic Imidazolium Polymer as Ion Conductor for Improved Oxygen Evolution Performance. Polymers 2019, 11, 1268. https://doi.org/10.3390/polym11081268
Zhang F, Yang M, Zhang S, Fang P. Protic Imidazolium Polymer as Ion Conductor for Improved Oxygen Evolution Performance. Polymers. 2019; 11(8):1268. https://doi.org/10.3390/polym11081268
Chicago/Turabian StyleZhang, Fangfang, Minchen Yang, Siyi Zhang, and Pengfei Fang. 2019. "Protic Imidazolium Polymer as Ion Conductor for Improved Oxygen Evolution Performance" Polymers 11, no. 8: 1268. https://doi.org/10.3390/polym11081268
APA StyleZhang, F., Yang, M., Zhang, S., & Fang, P. (2019). Protic Imidazolium Polymer as Ion Conductor for Improved Oxygen Evolution Performance. Polymers, 11(8), 1268. https://doi.org/10.3390/polym11081268