Evaluation of Electron Induced Crosslinking of Masticated Natural Rubber at Different Temperatures
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Masticated NR
2.3. Electron Beam Treatment of Masticated NR
2.4. Characterization
2.4.1. Size Exclusion Chromatography (SEC)
2.4.2. Fourier Transform Infrared (FT-IR) Spectroscopy
2.4.3. Sol Gel Content Test
2.4.4. Crosslinking Density Determination
2.4.5. Rheological measurements
3. Results and Discussion
3.1. The Characterization of Masticated NR
3.1.1. The Molecular Mass
3.1.2. The Viscosity and Modulus
3.1.3. FT-IR Spectra
3.2. Sol Gel and Crosslinking Density Analyses
3.3. Evaluation of Gx and Gs
3.4. Rheological Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salomez, M.; Subileau, M.; Intapun, J.; Bonfils, F.; Sainte-Beuve, J.; Vaysse, L.; Dubreucq, E. Micro-organisms in latex and natural rubber coagula of hevea brasiliensis and their impact on rubber composition, structure and properties. J. Appl. Microbiol. 2014, 117, 921–929. [Google Scholar] [CrossRef]
- Carli, L.N.; Roncato, C.R.; Zanchet, A.; Mauler, R.S.; Giovanela, M.; Brandalise, R.N.; Crespo, J.S. Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl. Clay Sci. 2011, 52, 56–61. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Sheltami, R.M.; Ahmad, I.; Abdullah, I.; Dufresne, A. Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: Effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties. Polymer 2015, 71, 51–59. [Google Scholar] [CrossRef]
- Coran, A.Y. Chemistry of the vulcanization and protection of elastomers: a review of the achievements. J. Appl. Polym. Sci. 2003, 87, 24–30. [Google Scholar] [CrossRef]
- Ghosh, P.; Katare, S.; Patkar, P.; Caruthers, J.M.; Venkatasubramanian, V.; Walker, K.A. Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanisms to a rational kinetic model. Rubber Chem. Technol. 2003, 76, 592–693. [Google Scholar] [CrossRef]
- Ikeda, Y.; Yasuda, Y.; Makino, S.; Yamamoto, S.; Tosaka, M.; Senoo, K.; Kohjiya, S. Strain-induced crystallization of peroxide-crosslinked natural rubber. Polymer 2007, 48, 1171–1175. [Google Scholar] [CrossRef]
- Rattanasom, N.; Saowapark, T.; Deeprasertkul, C. Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym. Test. 2007, 26, 369–377. [Google Scholar] [CrossRef]
- Makuuchi, K.; Cheng, S. Radiation Processing of Polymer Materials and Its Industrial Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- White, C.W.; Peercy, P.S. Laser and Electron Beam Processing of Materials; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Mondal, M.; Gohs, U.; Wagenknecht, U.; Heinrich, G. Efficiency of high energy electrons to produce polypropylene/natural rubber-based thermoplastic elastomer. Polym. Eng. Sci. 2013, 53, 1696–1705. [Google Scholar] [CrossRef]
- Mondal, M.; Gohs, U.; Wagenknecht, U.; Heinrich, G. Additive free thermoplastic vulcanizates based on natural rubber. Mater. Chem. Phys. 2013, 143, 360–366. [Google Scholar] [CrossRef]
- Smitthipong, W.; Nardin, M.; Schultz, J.; Suchiva, K. Adhesion and self-adhesion of rubbers, crosslinked by electron beam irradiation. Int. J. Adhes. Adhes. 2007, 27, 352–357. [Google Scholar] [CrossRef]
- Xu, Y.; Siswono, H.; Yoshii, F.; Makuuchi, K. Crosslinking of cis-1, 4-polyisoprene rubber by electron beam irradiation. J. Appl. Polym. Sci. 1997, 66, 113–116. [Google Scholar] [CrossRef]
- Khalid, M.; Ismail, A.F.; Ratnam, C.T.; Faridah, Y.; Rashmi, W.; Al Khatib, M.F. Effect of radiation dose on the properties of natural rubber nanocomposite. Radiat. Phys. Chem. 2010, 79, 1279–1285. [Google Scholar] [CrossRef]
- Mitra, S.; Chattopadhyay, S.; Sabharwal, S.; Bhowmick, A.K. Electron beam crosslinked gels-preparation, characterization and their effect on the mechanical, dynamic mechanical and rheological properties of rubbers. Radiat. Phys. Chem. 2010, 79, 289–296. [Google Scholar] [CrossRef]
- Chaudhari, C.V.; Bhardwaj, Y.K.; Patil, N.D.; Dubey, K.A.; Kumar, V.; Sabharwal, S. Radiation-induced vulcanisation of natural rubber latex in presence of styrene-butadiene rubber latex. Radiat. Phys. Chem. 2005, 72, 613–618. [Google Scholar] [CrossRef]
- Swanson, C.L.; Buchanan, R.A.; Otey, F.H. Molecular weights of natural rubbers from selected temperate zone plants. J. Appl. Polym. Sci. 1979, 23, 743–748. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J., Jr. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Valentín, J.L.; Carretero-González, J.; Mora-Barrantes, I.; Chassé, W.; Saalwachter, K. Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules 2008, 41, 4717–4729. [Google Scholar] [CrossRef]
- Tadmor, Z.; Gogos, C.G. Principles of Polymer Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Dos Santos, K.A.M.; Suarez, P.A.Z.; Rubim, J.C. Photo-degradation of synthetic and natural polyisoprenes at specific UV radiations. Polym. Degrad. Stab. 2005, 90, 34–43. [Google Scholar] [CrossRef]
- Poh, B.T.; Lee, K.S. FTIR study of thermal oxidation of ENR. Eur. Polym. J. 1994, 30, 17–23. [Google Scholar] [CrossRef]
- Narathichat, M.; Sahakaro, K.; Nakason, C. Assessment degradation of natural rubber by moving die processability test and FTIR spectroscopy. J. Appl. Polym. Sci. 2010, 115, 1702–1709. [Google Scholar] [CrossRef]
- Li, S.D.; Yu, H.P.; Peng, Z.; Zhu, C.S.; Li, P.S. Study on thermal degradation of sol and gel of natural rubber. J. Appl. Polym. Sci. 2000, 75, 1339–1344. [Google Scholar] [CrossRef]
- Sansatsadeekul, J.; Sakdapipanich, J.; Rojruthai, P. Characterization of associated proteins and phospholipids in natural rubber latex. J. Biosci. Bioeng. 2011, 111, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Nabil, H.; Ismail, H.; Azura, A.R. Compounding, mechanical and morphological properties of carbon-black-filled natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) blends. Polym. Test. 2013, 32, 385–393. [Google Scholar] [CrossRef]
- Sekkar, V.; Narayanaswamy, K.; Scariah, K.J.; Nair, P.R.; Sastri, K.; Ang, H.G. Evaluation by various experimental approaches of the crosslink density of urethane networks based on hydroxyl-terminated polybutadiene. J. Appl. Polym. Sci. 2007, 103, 3129–3133. [Google Scholar] [CrossRef]
- Charlesby, A.; Pinner, S.H. Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proc. R. Soc. Lond. A 1959, 249, 367–386. [Google Scholar]
- Hill, D.J.; Preston, C.M.; Salisbury, D.J.; Whittaker, A.K. Molecular weight changes and scission and crosslinking in poly (dimethyl siloxane) on gamma radiolysis. Radiat. Phys. Chem. 2001, 62, 11–17. [Google Scholar] [CrossRef]
- Dealy, J.M.; Read, D.J.; Larson, R.G. Structure and rheology of molten polymers: from structure to flow behavior and back again; Hanser Publishers: Munich, Germany, 2018. [Google Scholar]
- Zhang, Z.J.; Wan, D.; Xing, H.P.; Zhang, Z.J.; Tan, H.Y.; Wang, L.; Zheng, J.; An, Y.J.; Tang, T. A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer 2012, 53, 121–129. [Google Scholar] [CrossRef]
- Van Gurp, M.; Palmen, J. Time-temperature superposition for polymeric blends. Rheol. Bull. 1998, 67, 5–8. [Google Scholar]
- Trinkle, S.; Walter, P.; Friedrich, C. Van Gurp-Palmen plot II-classification of long chain branched polymers by their topology. Rheol. Acta 2002, 41, 103–113. [Google Scholar] [CrossRef]
- Read, D.J.; Auhl, D.; Das, C.; Den Doelder, J.; Kapnistos, M.; Vittorias, I.; McLeish, T.C. Linking models of polymerization and dynamics to predict branched polymer structure and flow. Science 2011, 333, 1871–1874. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, W.; Zhou, C. Rheokinetic study on homogeneous polymer reactions in melt state under strong flow field. Polymer 2009, 50, 4397–4405. [Google Scholar] [CrossRef]
Polymer | Mn,0 (g/mol) | T (°C) | a (kGy) | b | Gx | Gs | Gs/Gx |
---|---|---|---|---|---|---|---|
mNR | 51,000 ± 5000 | 25 | 72.53 | 0.28 | 1.30 ± 0.13 | 0.73 ± 0.07 | 0.56 |
80 | 69.68 | 0.49 | 1.36 ± 0.13 | 1.33 ± 0.13 | 0.98 | ||
170 | 71.00 | 0.56 | 1.33 ± 0.13 | 1.49 ± 0.15 | 1.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Gohs, U.; Müller, M.T.; Zschech, C.; Wießner, S. Evaluation of Electron Induced Crosslinking of Masticated Natural Rubber at Different Temperatures. Polymers 2019, 11, 1279. https://doi.org/10.3390/polym11081279
Huang Y, Gohs U, Müller MT, Zschech C, Wießner S. Evaluation of Electron Induced Crosslinking of Masticated Natural Rubber at Different Temperatures. Polymers. 2019; 11(8):1279. https://doi.org/10.3390/polym11081279
Chicago/Turabian StyleHuang, Ying, Uwe Gohs, Michael Thomas Müller, Carsten Zschech, and Sven Wießner. 2019. "Evaluation of Electron Induced Crosslinking of Masticated Natural Rubber at Different Temperatures" Polymers 11, no. 8: 1279. https://doi.org/10.3390/polym11081279
APA StyleHuang, Y., Gohs, U., Müller, M. T., Zschech, C., & Wießner, S. (2019). Evaluation of Electron Induced Crosslinking of Masticated Natural Rubber at Different Temperatures. Polymers, 11(8), 1279. https://doi.org/10.3390/polym11081279