Preparation of Graft Poly(Arylene Ether Sulfone)s-Based Copolymer with Enhanced Phase-Separated Morphology as Proton Exchange Membranes via Atom Transfer Radical Polymerization
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesis of Poly(Arylene Ether Sulfone) (PAES)
2.3. Synthesis of Bromomethylated Poly(Arylene Ether Sulfone) (BrPAES)
2.4. Preparation of Poly(Arylene Ether Sulfone)-Graft-Polystyrene Copolymers (PAESPSx)
2.5. Sulfonation of Poly(Arylene Ether Sulfone)-Graft-Polystyrene Copolymers (PAESPSxSy)
2.6. Preparation of Membranes
2.7. Characterizations
3. Results and Discussions
3.1. Synthesis of the Copolymers
3.2. Structural Characterization of the Copolymers
3.3. Characterization of Morphology
3.4. Ion Exchange Capacity
3.5. Water Uptake
3.6. Proton Conductivity
3.7. Thermal Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feng, S.; Shang, Y.; Wang, Y.; Liu, G.; Xie, X.; Dong, W.; Xu, J.; Mathur, V.K. Synthesis and crosslinking of hydroxyl-functionalized sulfonated poly(ether ether ketone) copolymer as candidates for proton exchange membranes. J. Membr. Sci. 2010, 352, 14–21. [Google Scholar] [CrossRef]
- Gu, Z.; Ding, J.; Yuan, N.; Chu, F.; Lin, B. Polybenzimidazole/zwitterion-coated polyamidoamine dendrimer composite membranes for direct methanol fuel cell applications. Int. J. Hydrogen Energy 2013, 38, 16410–16417. [Google Scholar] [CrossRef]
- Chen, L.K.; Wu, C.-S.; Chen, M.C.; Hsu, K.L.; Li, H.C.; Hsieh, C.H.; Hsiao, M.H.; Chang, C.L.; Chu, P.J. Cross-linked norbornene sulfonated poly(ether ketone)s for proton exchange membrane. J. Membr. Sci. 2010, 361, 143–153. [Google Scholar] [CrossRef]
- Boutsika, L.G.; Enotiadis, A.; Nicotera, I.; Simari, C.; Charalambopoulou, G.; Giannelis, E.P.; Steriotis, T. Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments. Int. J. Hydrogen Energy 2016, 41, 22406–22414. [Google Scholar] [CrossRef]
- Qian, W.; Shang, Y.; Wang, S.; Xie, X.; Mao, Z. Phosphoric acid doped composite membranes from poly (2,5-benzimidazole) (ABPBI) and CsxH3−xPW12O40/CeO2 for the high temperature PEMFC. Int. J. Hydrogen Energy 2013, 38, 11053–11059. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, S.Y.; Hwang, D.S.; Shin, D.W.; Cho, D.H.; Lee, K.H.; Kim, T.W.; Kim, T.W.; Lee, M.; Kim, D.S.; et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483. [Google Scholar] [CrossRef]
- Ding, J.; Chuy, C.; Holdcroft, S. A Self-organized network of nanochannels enhances ion conductivity through polymer films. Chem. Mater. 2001, 13, 2231–2233. [Google Scholar] [CrossRef]
- Ding, J.; Chuy, C.; Holdcroft, S. Solid polymer electrolytes based on ionic graft polymers: Effect of graft chain length on nano-structured, ionic networks. Adv. Funct. Mater. 2002, 12, 389–394. [Google Scholar] [CrossRef]
- Ding, J.; Chuy, C.; Holdcroft, S. Enhanced Conductivity in Morphologically Controlled Proton Exchange Membranes: Synthesis of Macromonomers by SFRP and Their Incorporation into Graft Polymers. Macromolecules 2002, 35, 1348–1355. [Google Scholar] [CrossRef]
- Peckham, T.J.; Holdcroft, S. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv. Mater. 2010, 22, 4667–4690. [Google Scholar] [CrossRef]
- Shin, D.W.; Guiver, M.D.; Lee, Y.M. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability. Chem. Rev. 2017, 117, 4759–4805. [Google Scholar] [CrossRef] [PubMed]
- Norsten, T.B.; Guiver, M.D.; Murphy, J.; Astill, T.; Navessin, T.; Holdcroft, S.; Frankamp, B.L.; Rotello, V.M.; Ding, J. Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): Improving PEM properties through rational design. Adv. Funct. Mater. 2006, 16, 1814–1822. [Google Scholar] [CrossRef]
- Nieh, M.-P.; Guiver, M.D.; Kim, D.S.; Ding, J.; Norsten, T. Morphology of comb-shaped proton exchange membrane copolymers based on a neutron scattering study. Macromolecules 2008, 41, 6176–6182. [Google Scholar] [CrossRef]
- Li, N.; Wang, C.; Lee, S.Y.; Park, C.H.; Lee, Y.M.; Guiver, M.D. Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s. Angew. Chem. Int. Ed. Engl. 2011, 50, 9158–9161. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Zhang, Y.; Xu, H.; Zhang, Z.; Fu, F.; Gao, S.; Ouadah, A.; Dong, Y.; Wang, S.; Zhu, C. Highly conductive proton exchange membranes from sulfonated polyphosphazene-graft-copolystyrenes doped with sulfonated single-walled carbon nanotubes. J. Membr. Sci. 2016, 514, 527–536. [Google Scholar] [CrossRef]
- Lafitte, B.; Jannasch, P. Proton-conducting aromatic polymers carrying hypersulfonated side chains for fuel cell applications. Adv. Funct. Mater. 2007, 17, 2823–2834. [Google Scholar] [CrossRef]
- Cheng, G.; Böker, A.; Zhang, M.; Krausch, G.; Müller, A.H.E. Amphiphilic cylindrical core-shell brushes via a “grafting from” process using ATRP. Macromolecules 2001, 34, 6883–6888. [Google Scholar] [CrossRef]
- Börner, H.G.; Beers, K.; Matyjaszewski, K.; Sheiko, S.S.; Möller, M. Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerization. Macromolecules 2001, 34, 4375–4383. [Google Scholar] [CrossRef]
- Zhang, M.; Russell, T.P. Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules 2006, 39, 3531–3539. [Google Scholar] [CrossRef]
- Herberg, A.; Yu, X.; Kuckling, D. End group stability of atom transfer radical polymerization (ATRP)-synthesized poly (N-isopropylacrylamide): Perspectives for diblock copolymer synthesis. Polymers 2019, 11, 678. [Google Scholar] [CrossRef]
- Zhang, Z.; Chalkova, E.; Fedkin, M.; Wang, C.; Lvov, S.N.; Komarneni, S.; Chung, T.C.M. Synthesis and characterization of poly(vinylidene fluoride)-g-sulfonated polystyrene graft copolymers for proton exchange membrane. Macromolecules 2008, 41, 9130–9139. [Google Scholar] [CrossRef]
- Tsang, E.M.; Zhang, Z.; Shi, Z.; Soboleva, T.; Holdcroft, S. Considerations of macromolecular structure in the design of proton conducting polymer membranes: Graft versus diblock polyelectrolytes. J. Am. Chem. Soc. 2007, 129, 15106–15107. [Google Scholar] [CrossRef] [PubMed]
- Tsang, E.M.W.; Zhang, Z.; Yang, A.C.C.; Shi, Z.; Peckham, T.J.; Narimani, R.; Frisken, B.J.; Holdcroft, S. Nanostructure, Morphology, and properties of fluorous copolymers bearing ionic grafts. Macromolecules 2009, 42, 9467–9480. [Google Scholar] [CrossRef]
- Tsang, E.M.W.; Shi, Z.; Holdcroft, S. Ionic purity and connectivity of proton-conducting channels in fluorous-ionic diblock copolymers. Macromolecules 2011, 44, 8845–8857. [Google Scholar] [CrossRef]
- Yang, A.C.C.; Narimani, R.; Zhang, Z.; Frisken, B.J.; Holdcroft, S. Controlling crystallinity in graft ionomers, and its effect on morphology, water Sorption, and proton conductivity of graft ionomer membranes. Chem. Mater. 2013, 25, 1935–1946. [Google Scholar] [CrossRef]
- Roh, D.K.; Ahn, S.H.; Seo, J.A.; Shul, Y.G.; Kim, J.H. Synthesis and characterization of grafted/crosslinked proton conducting membranes based on amphiphilic PVDF copolymer. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1110–1117. [Google Scholar] [CrossRef]
- Roh, D.K.; Choi, J.K.; Koh, J.K.; Shul, Y.G.; Kim, J.H. Nanocomposite proton conducting membranes based on amphiphilic PVDF graft copolymer. Macromol. Res. 2010, 18, 271–278. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; Lin, X.; Jiang, L.; Xu, T. Synthesis of soluble copolymers bearing ionic graft for alkaline anion exchange membrane. RSC Adv. 2012, 2, 4250–4257. [Google Scholar] [CrossRef]
- Erdogan, T.; Unveren, E.E.; Inan, T.Y.; Birkan, B. Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell. J. Membr. Sci. 2009, 344, 172–181. [Google Scholar] [CrossRef]
- Fu, F.; Xu, H.; Dong, Y.; He, M.; Zhang, Z.; Luo, T.; Zhang, Y.; Hao, X.; Zhu, C. Design of polyphosphazene-based graft copolystyrenes with alkylsulfonate branch chains for proton exchange membranes. J. Membr. Sci. 2015, 489, 119–128. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Ahn, D.; Woong Park, H.; Chang, T.; Lee, W. Direct sulfonation and photocrosslinking of unsaturated poly(styrene-b-butadiene-b-styrene) for proton exchange membrane of direct methanol fuel cell. J. Membr. Sci. 2013, 427, 85–91. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, Y.; Liu, Y.; You, K.; Song, N.; Liu, B.; Guan, S. Pendant-group cross-linked highly sulfonated co-polyimides for proton exchange membranes. J. Membr. Sci. 2015, 480, 83–92. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Feng, Z.; Xiang, X.; Wang, S.; Xie, X.; Ramani, V.K. Ring-opening metathesis polymerization for the preparation of polynorbornene-based proton exchange membranes with high proton conductivity. J. Membr. Sci. 2017, 528, 55–63. [Google Scholar] [CrossRef]
- Gonggo, S.T.; Radiman, C.L.; Bundjali, B.; Arcana, I.M. Properties of polymer electrolyte membranes prepared by blending sulfonated polystyrene with lignosulfonate. ITB J. Sci. 2012, 44, 285–295. [Google Scholar] [CrossRef]
- Smitha, B. Synthesis and characterization of proton conducting polymer membranes for fuel cells. J. Membr. Sci. 2003, 225, 63–76. [Google Scholar] [CrossRef]
- Li, W.; Manthiram, A.; Guiver, M.D. Acid-base blend membranes consisting of sulfonated poly(ether ether ketone) and 5-amino-benzotriazole tethered polysulfone for DMFC. J. Membr. Sci. 2010, 362, 289–297. [Google Scholar] [CrossRef]
Copolymers a | Feed Ratio b | Graft Degree c | Graft Length d | Sulfonation Time (h) | Sulfonation Degree e |
---|---|---|---|---|---|
PAESPS12S1 | 0.2:1.2 | 21.74% | 15.82 | 1 | 41.80% |
PAESPS12S2 | 2 | 49.01% | |||
PAESPS15S1 | 0.2:1.5 | 32.93% | 20.51 | 1 | 38.68% |
PAESPS15S2 | 2 | 46.64% | |||
PAESPS18S1 | 0.2:1.8 | 43.95% | 26.14 | 1 | 39.50% |
PAESPS18S2 | 2 | 51.81% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, X.; Wang, Z.; Xie, X.; Qian, W. Preparation of Graft Poly(Arylene Ether Sulfone)s-Based Copolymer with Enhanced Phase-Separated Morphology as Proton Exchange Membranes via Atom Transfer Radical Polymerization. Polymers 2019, 11, 1297. https://doi.org/10.3390/polym11081297
Zhao Y, Li X, Wang Z, Xie X, Qian W. Preparation of Graft Poly(Arylene Ether Sulfone)s-Based Copolymer with Enhanced Phase-Separated Morphology as Proton Exchange Membranes via Atom Transfer Radical Polymerization. Polymers. 2019; 11(8):1297. https://doi.org/10.3390/polym11081297
Chicago/Turabian StyleZhao, Yang, Xue Li, Zhongyang Wang, Xiaofeng Xie, and Wei Qian. 2019. "Preparation of Graft Poly(Arylene Ether Sulfone)s-Based Copolymer with Enhanced Phase-Separated Morphology as Proton Exchange Membranes via Atom Transfer Radical Polymerization" Polymers 11, no. 8: 1297. https://doi.org/10.3390/polym11081297
APA StyleZhao, Y., Li, X., Wang, Z., Xie, X., & Qian, W. (2019). Preparation of Graft Poly(Arylene Ether Sulfone)s-Based Copolymer with Enhanced Phase-Separated Morphology as Proton Exchange Membranes via Atom Transfer Radical Polymerization. Polymers, 11(8), 1297. https://doi.org/10.3390/polym11081297