Molecular Morphology and Viscoelasticity of ASP Solution under the Action of a Different Medium Injection Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model of the Different Medium Tool
2.2. Chemicals
2.3. Brine
2.4. Experimental Procedure
2.4.1. Solution Preparation
2.4.2. Experimental Study
2.5. Experimental Theory
2.5.1. Viscosity
2.5.2. First Normal Stress Difference
2.5.3. Storage Modulus and Loss Modulus
3. Results and Discussion
3.1. Effect of the Different Medium Tool on Molecular Micromorphology of ASP Solution
3.2. Effect of the Different Medium Tool on Viscoelasticity of ASP Solution
3.3. Effect of the Different Medium Tool on Storage Modulus and Loss Modulus of ASP Solution
4. Conclusions
- The molecular chain of ASP solution is broken and the spatial grid structure is destroyed under the action of the different medium tool. The viscosity and elasticity of the solution decreased, but the effect on the viscosity was greater.
- The elastic effect of ASP solution is stronger than the viscous effect after the action of the different medium tool.
- The relaxation time, zero shear viscosity and other physical parameters obtained in the steady shear experiment are basically consistent with the results of the dynamic mechanical experiment, and the experimental results of the effect of the different medium tool on ASP solution are true and effective.
- The shearing effect of the different medium tool on ASP solution with high concentration and high molecular weight (25 million, 2000 mg/L) is the best, and the oil displacement effect in low permeability oil layer is the best.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ehrlich, R.; Hasiba, H.H.; Raimondi, P. Alkaline water flooding for wettability alteration–evaluating a potential field application. J. Petrol. Technol. 1974, 26, 1335–1343. [Google Scholar] [CrossRef]
- Hirasaki, G.J.; Miller, C.A.; Puerto, M. Recent advances in surfactant EOR. SPE J. 2011, 16, 889–907. [Google Scholar] [CrossRef]
- Gao, P.; Towler, B.F.; Li, Y.; Zhang, X. Integrated evaluation of surfactant–polymer floods. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 11–13 April 2010. [Google Scholar]
- Liu, S.; Zhang, D.L.; Yan, W.; Puerto, M.; Hirasaki, G.J.; Miller, C.A. Favorable attributes of alkaline-surfactant-polymer flooding. SPE J. 2008, 13, 5–16. [Google Scholar] [CrossRef]
- Gao, S.; Li, H.; Li, H. Laboratory investigation of combination of alakaline-surfactant-polymer for daqing EOR. SPE Reserv. Eng. 1995, 10, 194–197. [Google Scholar] [CrossRef]
- Clark, S.; Pitts, M.; Smith, S. Design and application of an alkaline-surfactant-polymer recovery system to the west Kiehl field. SPE Adv. Technol. Ser. 1993, 1, 172–179. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Hou, J.R.; Zhang, J.Z.; Xie, D.H.; Ren, F.; Zhang, Y. Evaluation of low-concentration surfactant system for chemical flooding. Pet. Geol. Recovery Effic. 2014, 1, 74–77. [Google Scholar]
- Yan, W.H.; Yao, Z.J.; Shi, X.B.; Wu, A.D.; Pan, W.H. Experimental Study on the Displacement of Oil by ASP Weak Alkali System in Class III Reservoirs. Spec. Oil Gas Reserv. 2013, 2, 102–104. [Google Scholar]
- Zhang, T.K.; Li, Y.H.; Zhao, F.L. Laboratory research of oil displacement compound system for layer IV5–11, Shuanghe oilfield. Pet. Geol. Recovery Effic. 2012, 1, 62–65. [Google Scholar]
- Huang, B.; Zhang, W.; Xu, R.; Shi, Z.Z.; Fu, C.; Wang, Y.; Song, K.P. A Study on the Matching Relationship of Polymer Molecular Weight and Reservoir Permeability in ASP Flooding for Duanxi Reservoirs in Daqing Oil Field. Energies 2017, 7, 951. [Google Scholar] [CrossRef]
- Li, T.; Fang, J.C.; Jiao, B.; He, L.; Dai, C.L.; You, Q. Study on a Novel Gelled Foam for Conformance Control in High Temperature and High Salinity Reservoirs. Energies 2018, 11, 1364. [Google Scholar] [CrossRef]
- Seright, R.S.; Seheult, J.M.; Talashek, T. Injectivity characteristics of EOR polymers. SPE Res. Eval. Eng. 2009, 12, 783–792. [Google Scholar] [CrossRef]
- Luo, W.L.; Ma, D.S.; Nie, X.B. Study on matching relation between polymer molecular size and pore size for conglomerate reservoir. In Proceedings of the International Petroleum Technology Conference, Beijing, China, 26–28 March 2013. [Google Scholar]
- Zhao, X.Q.; Pan, F.; Guan, W.T. A novel method of optimizing the molecular weight of polymer flooding. In Proceedings of the SPE Enhanced Oil Recovery Conference, Lumpur, Malaysia, 19–21 July 2011. [Google Scholar]
- Guo, H. How to Select Polymer Molecular Weight and Concentration to Avoid Blocking in Polymer Flooding? In Proceedings of the SPE Symposium: Production Enhancement and Cost Optimisation, Kuala Lumpur, Malaysia, 7–8 November 2017. [Google Scholar]
- Marx, N.; Ponjavic, A.; Taylor, R.I.; Spikes, H.A. Study of permanent shear thinning of VM polymer solutions. Tribol. Lett. 2017, 65, 106. [Google Scholar] [CrossRef]
- Chen, X.H.; Duan, H. Principle and Application of Polymer Single-tube Multi-layer Separate Injection Technology. Pet. Geol. Oilfield Dev. Daqing 2004, 4, 53–55. [Google Scholar]
- Geng, C.H.; Liu, Q.W. Study on Polymer Single Pipe Layered Injection Process. Pet. Geol. Oilfield Dev. Daqing 2006, 25, 38–41. [Google Scholar]
- Zhou, W.F.; Yang, Z.G.; Wang, J.; Wang, H.L.; Nan, Y. Research on Multi Layer Injection Technology of Eccentric Double Layer Pipe in ASP Flooding. Oil Field Equip. 2016, 45, 15–18. [Google Scholar]
- Li, H.C. Overview of separate injection technique for polymer flooding in Daqing oilfield. Oil Gas Geol. 2012, 33, 296–301. [Google Scholar]
- Xin, X.K.; Yu, G.M.; Chen, Z.X.; Wu, K.L.; Dong, X.H.; Zhu, Z.Y. Effect of Polymer Degradation on Polymer Flooding in Heterogeneous Reservoirs. Polymers 2018, 10, 857. [Google Scholar] [CrossRef]
- Nagashiro, W.; Tsunoda, T. Degradation of Polyacrylamide Molecules in Aqueous Solutions by High-speed Stirring. J. Polym. Sci. 1977, 21, 1149–1153. [Google Scholar] [CrossRef]
- Zhang, L.H.; Dong, J.X.; Jiang, B. A study of mixing performance of polyacrylamide solutions in a new-type static mixer combination. Chem. Eng. Process. Process Intensif. 2015, 88, 19–28. [Google Scholar] [CrossRef]
- Al-Shakry, B.; Skauge, T.; Shiran, B.S.; Skauge, A. Impact of Mechanical Degradation on Polymer Injectivity in Porous Media. Polymers 2018, 10, 742. [Google Scholar] [CrossRef]
- Lamas, F.L.; Botechia, V.E.; Correia, M.G.; Schiozer, D.J.; Delshad, M. Influence of polymer properties on selection of production strategy for a heavy oil field. J. Pet. Sci. Eng. 2018, 163, 110–118. [Google Scholar] [CrossRef]
- Jellinek, H.H.G.; White, G. The Degradation of Long-Chain Molecules by Ultrasonic Waves. J. Polym. Sci. 1951, 6, 745–756. [Google Scholar] [CrossRef]
- Al-Hashmi, A.R.; Al-Maamari, R.S.; Al-Shabib, I.S.; Masnsoor, A.M.; Zaitoun, A.; Al-Sharji, H.H. Rheology and mechanical degradation of high-molecular-weight partially hydrolyzed polyacrylamide during flow through capillaries. J. Pet. Sci. Eng. 2013, 105, 100–106. [Google Scholar] [CrossRef]
- Zaitoun, A.; Makakou, P.; Blin, N.; Al-Maamari, R.S.; Al-Hashmi, A.R.; Abdel-Goad, M.; Al-Sharji, H.H. Shear stability of EOR polymers. SPE J. 2012, 17, 335–339. [Google Scholar] [CrossRef]
- Jouenne, S.; Chakibi, H.; Levitt, D. Polymer stability after successive mechanical-degradation events. SPE J. 2017, 23, 18–33. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.H.; Fu, C.; Wang, Y.; Cheng, H.R. Study Rheological Behavior of Polymer Solution in Different-Medium-Injection-Tools. Polymers 2019, 11, 319. [Google Scholar] [CrossRef]
- Chen, X.C.; Wu, K.; Li, H.C.; Gao, G.L.; Tang, J.D.; Liang, F.M. Flow Field Analysis and Stage Number Optimization of Tandem Nozzles for ASP Flooding. China Pet. Mach. 2015, 43, 100–103. [Google Scholar]
- Huang, B.; Zhang, W.; Fu, C.; Feng, P.X.; Wang, Y. Study of Flow Characteristics of ASP Solution Based on Numerical Simulation in Jet Nozzle Channel. Chem. Technol. Fuels Oils 2017, 53, 412–419. [Google Scholar] [CrossRef]
- Zhang, S.J.; Liu, C.J.; Cai, M.; Yang, Z.G.; Liang, F.M. Structure Optimization for Different Medium Injection Tools for Ackaline Surfactant Polymer (ASP) Flooding. Oil Drill. Prod. Technol. 2016, 38, 114–117. [Google Scholar]
- Haponska, M.; Trojanowska, A.; Nogalska, A.; Jastrzab, R.; Gumi, T.; Tylkowski, B. PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature. Polymers 2017, 9, 718. [Google Scholar] [CrossRef]
- Dayyoub, T.; Maksimkin, A.V.; Kaloshkin, S.; Kolesnikov, S.; Chukov, D.; Dyachkova, T.P.; Irina, G. The Structure and Mechanical Properties of the UHMWPE Films Modified by the Mixture of Graphene Nanoplates with Polyaniline. Polymers 2019, 11, 23. [Google Scholar] [CrossRef]
- Nawaz, M.; Yusuf, N.; Habib, S.; Shakoor, R.A.; Ubaid, F.; Ahmad, Z.; Kahraman, R.; Mansour, S.; Gao, W. Development and Properties of Polymeric Nanocomposite Coatings. Polymers 2019, 11, 852. [Google Scholar] [CrossRef]
- Liu, J.; Fan, W.; Lu, G.; Zhou, D.; Wang, Z.; Yan, J. Semi-Interpenetrating Polymer Networks Based on Cyanate Ester and Highly Soluble Thermoplastic Polyimide. Polymers 2019, 11, 862. [Google Scholar] [CrossRef]
- Seright, R.S.; Fan, T.; Wavrik, K.; Wan, H.; Gaillard, N.; Favero, C. Rheology of a new sulfonic associative polymer in porous media. SPE Res. Eval. Eng. 2011, 14, 726–734. [Google Scholar] [CrossRef]
- Han, M.; Xianmin, Z.; Al-Hasan, B.F.; Zahrani, B.H.; Al-Sofi, A.K.M. Laboratory investigation of the injectivity of sulfonated polymer solutions into the carbonate reservoir rocks. In Proceedings of the SPE Enhanced Oil Recovery conference, Muscat, Oman, 16–18 April 2012. [Google Scholar]
- Azad, M.S.; Sultan, A.S. Extending the applicability of chemical EOR to high temperature, high salinity and fractured formation through viscoelastic surfactants. In Proceedings of the SPE Saudi Arabian Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 21–24 April 2014. [Google Scholar]
- Chen, J.; Bogue, D.C. Time-dependent stress in polymer melts and review of viscoelastic theory. J. Rheol. 1972, 16, 59–78. [Google Scholar] [CrossRef]
- De, S.; Kuipers, J.A.M.; Peters, E.A.J.F.; Padding, J.T. Viscoelastic flow past mono- and bidisperse random arrays of cylinders: Flow resistance, topology and normal stress distribution. Soft Matter 2017, 13, 9138–9146. [Google Scholar] [CrossRef]
- Cai, S.W.; Zhao, H.G.; Li, T.X.; He, X.R.; Wang, X.; Rodrigues, A.M.; Zhang, R. Influence of molecular interplay on the HPAM/UR rheological properties in an aqueous solution. RSC Adv. 2017, 7, 37055–37064. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.K.; Yu, G.M.; Chen, Z.X.; Wu, K.L.; Dong, X.H.; Zhu, Z.Y. Effect of Non-Newtonian Flow on Polymer Flooding in Heavy Oil Reservoirs. Polymers 2018, 10, 1225. [Google Scholar] [CrossRef]
- De, S.; Krishnan, P.; Van, D.S.J.; Kuipers, A.M.; Peters, E.A.J.F.; Padding, J.T. Viscoelastic effects on residual oil distribution in flows through pillared microchannels. J. Colloid Interface Sci. 2017, 510, 262–271. [Google Scholar] [CrossRef]
- Zhong, H.Y.; Li, Y.Y.; Zhang, W.D.; Yin, H.J.; Lu, J.; Guo, D.Z. Microflow Mechanism of Oil Displacement by Viscoelastic Hydrophobically Associating Water-Soluble Polymers in Enhanced Oil Recovery. Polymers 2018, 10, 628. [Google Scholar] [CrossRef]
- Madhar, S.A.; Japan, J.T. Novel viscoelastic model for predicting the synthetic polymer’s viscoelastic behavior in porous media using direct extensional rheological measurements. Fuel 2019, 235, 218–226. [Google Scholar]
- Zhong, H.Y.; Zhang, W.D.; Fu, J.; Lu, J.; Yin, H.J. The Performance of Polymer Flooding in Heterogeneous Type II Reservoirs—An Experimental and Field Investigation. Energies 2017, 10, 454. [Google Scholar]
- Bird, B.R.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1987; Volume 1. [Google Scholar]
- Herr, J.W.; Routson, W.G. Polymer Structure and Its Relationship to the Dilute Solution Properties of High Molecular Weight Polyacrylamide. In Proceedings of the Fall Meeting of the Society of Petroleum Engineers of AIME, Houston, TX, USA, 6–9 October 1974. [Google Scholar]
- Lu, X.G.; Wang, W. The Molecular Configuration and Its Influential Factors of Al3+ Cross-linked Polyacrylamide Gel. Acta Phys. Chim. Sin. 2006, 22, 631–634. [Google Scholar]
- Zhang, Z.L.; Zhang, H.D.; Yang, Y.L.; Vinckier, I.; Laun, H.M. Rheology and Morphology of Phase-Separating Polymer Blends. In Proceedings of the IADC/SPE Drilling Conference and Exhibition, Fort Worth, TX, USA, 6–8 March 2018. [Google Scholar]
- Koynov, K.; Bahtiar, A.; Ahn, T.; Cordeiro, R.M.; Horhold, H.H.; Bubeck, C. Molecular Weight Dependence of Chain Orientation and Optical Constants of Thin Films of the Conjugated Polymer MEH-PPV. Macromolecules 2006, 39, 8692–8698. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.T.; Wang, S.L.; Hua, L.L.; Zhou, M. Determination of Viscosity Average Molecular Weight of Ultra High Molecular Weight Polyethylene by Viscometry. Eng. Plast. Appl. 2013, 41, 66–69. [Google Scholar]
- Luo, C.X.; Zhang, L.G.; Hou, J.X.; Guo, M.F.; Qiao, J.L. Molecular Weight Characteriaztion of Polyacrylamide Foroil Recovery by Multiangle Light Scattering. Acta Polym. Sin. 2012, 3, 313–317. [Google Scholar] [CrossRef]
- Martin, F.D.; Hatch, M.J.; Shepitka, J.S.; Ward, J.S. Improved water-soluble polymers for enhanced recovery of oil. In Proceedings of the SPE Oilfield and Geothermal Chemistry Symposium, Denver, CO, USA, 1–3 June 1983. [Google Scholar]
- Martin, F.D. Mechanical degradation of polyacrylamide solutions in core plugs from several carbonate reservoirs. SPE Form. Eval. 1986, 1, 139–150. [Google Scholar] [CrossRef]
- Odell, J.A.; Muller, A.J.; Narh, K.A.; Keller, A. Degradation of polymer-solutions in extensional flows. Macromolecules 1990, 23, 3092–3103. [Google Scholar] [CrossRef]
- Muller, A.J.; Odell, J.A.; Carrington, S. Degradation of semidilute polymer-solutions in elongational flows. Polymer 1992, 33, 2598–2604. [Google Scholar]
- Maerker, J.M. Shear degradation of partially hydrolyzed polyacrylamide solutions. Soc. Pet. Eng. J. 1975, 15, 311–322. [Google Scholar] [CrossRef]
- Skauge, T.; Skauge, A.; Salmo, I.C.; Ormehaug, P.A.; Al-Azri, N.; Wassing, L.M.; Glasbergen, G.; Van Wunnik, J.N.; Masalmeh, S.K. Radial and linear polymer flow-influence on injectivity. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Be, M.; Hincapie, R.E.; Rock, A.; Gaol, C.L.; Tahir, M.; Ganzer, L. Comprehensive evaluation of the EOR polymer viscoelastic phenomenon at low reynolds number. In Proceedings of the SPE Europec Featured at 79th EAGE Conference and Exhibition, Paris, France, 12–15 June 2017. [Google Scholar]
- Zamani, N.; Bondino, I.; Kaufmann, R.; Skauge, A. Computation of Polymer In-Situ Rheology Using Direct Numerical Simulation. J. Pet. Sci. Eng. 2017, 159, 92–102. [Google Scholar] [CrossRef]
- Sharafi, M.S.; Jamialahmadi, M.; Hoseinpour, S.A. Modeling of Viscoelastic Polymer Flooding in Core-Scale for Prediction of Oil Recovery Using Numerical Approach. J. Mol. Liq. 2018, 250, 295–306. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H. A novel model and sensitivity analysis for viscoelastic polymer flooding in offshore oilfield. J. Ind. Eng. Chem. 2014, 20, 656–667. [Google Scholar] [CrossRef]
- Hasan, S.W.; Ghannam, M.T.; Esmail, N. Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel 2010, 89, 1095–1100. [Google Scholar] [CrossRef]
- He, M.J.; Chen, W.X.; Dong, X.X. Polymer Physics; Fudan University Press: Shanghai, China, 2000. [Google Scholar]
- Sato, T.; Hamada, M.; Teramoto, A. Solution Viscosity of a Moderately Stiff Polymer: Cellulose Tris (phenyl carbamate). Macromolecules 2003, 36, 6840–6843. [Google Scholar] [CrossRef]
- Wisniewka, A.; Sozanski, K.; Kalwarczyk, T.; Krolik, K.K.; Holyst, R. Scaling Equation for Viscosity of Polymer Mixtures in Solutions with Application to Diffusion of Molecular Probes. Macromolecules 2017, 50, 4555–4561. [Google Scholar] [CrossRef]
- Marstokk, O.; Nystrom, B.; Roots, J. Effect of Denaturant and Polymer Concentration on the Structural and Dynamical Properties of Aqueous Solutions of Poly(N-acetamido acrylamide). Macromolecules 1998, 31, 4205–4212. [Google Scholar] [CrossRef]
- Ohshima, A.; Yamagata, A.; Sato, T.; Teramoto, A. Entanglement Effects in Semiflexible Polymer Solutions. 3. Zero-Shear Viscosity and Mutual Diffusion Coefficient of Poly(n-hexyl isocyanate) Solutions. Macromolecules 1999, 25, 8645–8654. [Google Scholar] [CrossRef]
- Xia, H.F.; Wang, D.M.; Guan, Q.J.; Liu, Y.K. Viscoelastic Test of Polymer Solution. J. Daqing Pet. Inst. 2002, 26, 105–108. [Google Scholar]
- Jiang, H.F.; Wu, W.X.; Wang, D.M.; Zeng, Y.M.; Zhao, S.G.; Nie, J. The Effect of Elasticity on Displacement Efficiency in the Lab and Results of High-Concentration Polymer Flooding in the Field. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008. [Google Scholar]
- Tang, Y.J.; Wang, X.Y.; Huang, B.B.; Wang, Z.B.; Zhang, N. Effect of Cationic Surface Modification on the Rheological Behavior and Microstructure of Nanocrystalline Cellulose. Polymers 2018, 10, 278. [Google Scholar] [CrossRef]
- Delshad, M.; Kim, D.H.; Magbagbeola, O.A.; Huh, C.; Pope, G.A.; Tarahhom, F. Mechanistic Interpretation and Utilization of Viscoelastic Behavior of Polymer Solutions for Improved Polymer-Flood Efficiency. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008. [Google Scholar]
Contraction Radius R1 (mm) | Contraction Length l1 (mm) | Cylinder Length l2 (mm) | Cylinder Radius R2 (mm) | Diffusion Length l3 (mm) | Diffusion Radius R3 (mm) |
---|---|---|---|---|---|
5 | 3 | 2 | 2 | 1 | 3 |
Chemical Composition | Na+ | K+ | Ca2+ | Mg2+ | SO42− | Cl− | HCO3− |
---|---|---|---|---|---|---|---|
Concentration (mg/L) | 853 | 18 | 54 | 174 | 270 | 601 | 186 |
ASP Solution | Before Action of Tool | After Action of Tool | Before Action of Tool | After Action of Tool | Before Action of Tool | After Action of Tool |
---|---|---|---|---|---|---|
16 million 1000 mg/L | 0.243 | 0.205 | 42.1 | 25.2 | 0.569 | 0.624 |
16 million 2000 mg/L | 0.251 | 0.218 | 216.52 | 68.98 | 0.439 | 0.565 |
19 million 1000 mg/L | 0.252 | 0.225 | 55.71 | 37.19 | 0.557 | 0.594 |
19 million 2000 mg/L | 0.261 | 0.239 | 226.73 | 113.02 | 0.442 | 0.526 |
25 million 1000 mg/L | 0.287 | 0.269 | 64.96 | 47.02 | 0.604 | 0.638 |
25 million 2000 mg/L | 0.303 | 0.275 | 268.69 | 171.43 | 0.448 | 0.491 |
Molecular Weight (million) | Concentration (mg/L) | Before Action of Tool SN1 | After Action of Tool SN2 |
---|---|---|---|
16 | 1000 | 0.21 | 0.14 |
16 | 2000 | 0.54 | 0.43 |
19 | 1000 | 0.38 | 0.26 |
19 | 2000 | 0.87 | 0.69 |
25 | 1000 | 0.72 | 0.56 |
25 | 2000 | 1.32 | 1.03 |
Molecular Weight (million) | Concentration (mg/L) | Before Action of Tool | Before Action of Tool | Before Action of Tool | After Action of Tool |
---|---|---|---|---|---|
16 | 1000 | 45.62 | 26.36 | 0.246 | 0.208 |
16 | 2000 | 219.38 | 68.73 | 0.253 | 0.221 |
19 | 1000 | 56.79 | 39.67 | 0.256 | 0.226 |
19 | 2000 | 228.98 | 115.49 | 0.268 | 0.243 |
25 | 1000 | 68.38 | 48.94 | 0.293 | 0.271 |
25 | 2000 | 272.68 | 176.38 | 0.309 | 0.277 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Hu, X.; Fu, C.; Cheng, H.; Wang, X.; Wang, L. Molecular Morphology and Viscoelasticity of ASP Solution under the Action of a Different Medium Injection Tool. Polymers 2019, 11, 1299. https://doi.org/10.3390/polym11081299
Huang B, Hu X, Fu C, Cheng H, Wang X, Wang L. Molecular Morphology and Viscoelasticity of ASP Solution under the Action of a Different Medium Injection Tool. Polymers. 2019; 11(8):1299. https://doi.org/10.3390/polym11081299
Chicago/Turabian StyleHuang, Bin, Xinyu Hu, Cheng Fu, Haoran Cheng, Xin Wang, and Li Wang. 2019. "Molecular Morphology and Viscoelasticity of ASP Solution under the Action of a Different Medium Injection Tool" Polymers 11, no. 8: 1299. https://doi.org/10.3390/polym11081299
APA StyleHuang, B., Hu, X., Fu, C., Cheng, H., Wang, X., & Wang, L. (2019). Molecular Morphology and Viscoelasticity of ASP Solution under the Action of a Different Medium Injection Tool. Polymers, 11(8), 1299. https://doi.org/10.3390/polym11081299