Steady-State Behavior and Endothelialization of a Silk-Based Small-Caliber Scaffold In Vivo Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Silk Fibroin Aqueous Solution
2.2. Preparation of SFTSs
2.3. SFTS Implantation
2.4. Color Doppler Sonography and Digital Subtraction Angiography
2.5. Scanning Electron Microscopy (SEM)
2.6. Histological Evaluation
2.7. Immunohistochemical Assay
2.8. RNA Extraction and Real-Time PCR
3. Results and Discussion
3.1. Dynamic Patency and Geometrical Morphology of SFTSs
3.2. Microscopic Observation of SFTSs
3.3. Histological Analysis of Endothelialization
3.4. Immunohistochemical Analysis of Endothelialization
3.5. Gene Expression Level of CD31 and VEGF
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tomizawa, Y. Vascular prostheses for aortocoronary bypass grafting: A review. Artif. Organs. 1995, 19, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M.R.; Campbell, G.R.; Rolfe, B.E.; Campbell, J.H. Tissue-engineered blood vessels alternative to autologous grafts. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Demiri, E.C.; Iordanidis, S.L.; Mantinaos, C.F. Experimental use of prosthetic grafts in microvascular surgery. Handchir. Mikrochir. Plast. Chir. 1999, 31, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Kannan, R.Y.; Salacinski, H.J.; Butler, P.E.; Hamilton, G.; Seifalian, A.M. Current status of prosthetic bypass grafts: A review. J. Biomed. Mater. Res. Part B 2005, 74B, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Van Det, R.J.; Vriens, B.H.R.; Van der Palen, J.; Geelkerken, R.H. Dacron or ePTFE for femoro-popliteal above-knee bypass grafting: Short- and long-term results of a multicentre randomised trial. Eur. J. Vasc. Endovasc. Surg. 2009, 37, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.D. Endothelial progenitor cells—An evolving story. Microvasc. Res. 2010, 79, 162–168. [Google Scholar] [CrossRef]
- Goh, E.T.; Wong, E.; Farhatnia, Y.; Tan, A.; Seifalian, A.M. Accelerating in situ endothelialisation of cardiovascular bypass grafts. Int. J. Mol. Sci. 2015, 16, 597–627. [Google Scholar] [CrossRef] [PubMed]
- Parka, Y.R.; Jua, H.W.; Lee, J.M.; Lee, O.J.; Moona, B.M.; Parka, H.J. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int. J. Biol. Macromol. 2016, 93, 1567–1574. [Google Scholar] [CrossRef]
- Madden, P.W.; Lai, J.N.X.; Georg, K.A.; Giovenco, T.; Harkin, D.G.; Chirila, T.V. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials 2011, 32, 4076–4084. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; Ran, J.; Shen, X.; Tong, H. Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. Int. J. Biol. Macromol. 2014, 65, 1–7. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Ding, F.; Zhang, P.; Liu, J.; Gu, X. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 2007, 28, 1643–1652. [Google Scholar] [CrossRef]
- Shi, P.; Abbah, S.A.; Saran, K.; Zhang, Y.; Li, J.; Goh, J.C.H. Silk fibroin-based complex particles with bioactive encrustation for bone morphogenetic protein 2 delivery. Biomacromolecules 2013, 14, 4465–4474. [Google Scholar] [CrossRef]
- Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M.A.; Atyabi, F.; Hosseinkhani, H. Silk fibroin nanoparticle as a novel drug delivery system. J. Control. Release 2015, 206, 161–176. [Google Scholar] [CrossRef]
- Marcolin, C.; Draghi, L.; Tanzi, M.; Faré, S. Electrospun silk fibroin–gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. J. Mater. Sci. Mater. Med. 2017, 28, 1–12. [Google Scholar] [CrossRef]
- Moon, B.M.; Kim, D.K.; Park, H.J.; Ju, H.W.; Lee, O.J.; Kim, J.H. Fabrication and characterization of three-dimensional silk bibroin scaffolds using a mixture of salt/sucrose. Macromol. Res. 2014, 22, 1268–1274. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Y.; Yi, H.; Liu, Z.; Sun, D.; Zhao, H. Cytocompatibility of a silk fibroin tubular scaffold. Mater. Sci. Eng. C 2014, 34, 429–436. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, F.; Li, H.; Shi, P.; Yin, Y.; Dong, F.; Wang, J. Preparation, characterization and in vivo graft patency of a silk fibroin tubular scaffold. Mater. Technol. 2017, 33, 1–8. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, D.; Yi, H.; Wang, J. Characterization of a PEG-DE cross-linked tubular silk scaffold. Text. Res. J. 2014, 84, 959–967. [Google Scholar] [CrossRef]
- Sun, X.; Hao, Y.; Wang, Q.; Dong, F.; Wang, J. Cell growth and proliferation on the interface of a silk fabric tubular scaffold. Text. Res. J. 2015, 86, 1–9. [Google Scholar] [CrossRef]
- Tu, F.; Liu, Y.; Li, H.; Shi, P.; Hao, Y.; Wu, Y.; Yi, H.; Yin, Y.; Wang, J. Vascular cell co-culture on silk fibroin matrix. Polymers 2018, 10, 39. [Google Scholar] [CrossRef]
- Bouten, C.V.C.; Dankers, P.Y.W.; Driessen-Mol, A.; Pedron, S.; Brizard, A.M.A.; Baaijens, F.P.T. Substrates for cardiovascular tissue engineering. Adv. Drug Deliver. Rev. 2011, 63, 221–241. [Google Scholar] [CrossRef]
- Spaet, T.H.; Gaynor, E.; Stemerman, M.B. Thrombosis, atherosclerosis, and endothelium. Am. Heart J. 1974, 87, 661–668. [Google Scholar] [CrossRef]
- Jenkins, N.T.; Padilla, J.; Boyle, L.J.; Credeur, D.P.; Laughlin, M.H.; Fadel, P.J. Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium. Hypertension 2013, 61, 615–621. [Google Scholar] [CrossRef]
- Filipe, E.C.; Santos, M.; Hung, J.; Lee, B.S.L.; Yang, N.; Chan, A.H.P.; Ng, M.K.C.; Rnjak-Kovacina, J.; Wise, S.G. Rapid endothelialization of off-the-shelf small diameter silk vascular grafts. JACC Basic Transl.Sci. 2018, 3, 38–53. [Google Scholar] [CrossRef]
- Wang, J.; Yi, H.; Wei, Y. Preliminary biocompatibility evaluation of regenerated Antheraea yamamai silk fibroin in vitro. J. Wuhan Univ. Technol. 2011, 26, 1044–1048. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, H.; Yang, Y.; Wang, J. Construction and analysis of morphological characteristics of a novel fabric-based silk fibroin vascular prosthesis. Text. Biol. Eng. Inform. Symp. 2011, 151–154. [Google Scholar]
- Sun, D.; Hao, Y.; Yang, G.; Wang, J. Hemocompatibility and cytocompatibility of the hirudin-modified silk fibroin. J. Biomed. Mater. Res. Part B 2015, 103B, 556–562. [Google Scholar] [CrossRef]
- She, Z.; Liu, W.; Feng, Q. Silk fibroin/chitosan/heparin scaffold: Preparation, antithrombogenicity and culture with hepatocytes. Polym. Int. 2010, 59, 55–61. [Google Scholar] [CrossRef]
- Seib, F.P.; Herklotz, M.; Burke, K.A.; Maitz, M.F.; Werner, C.; Kaplan, D.L. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications. Biomaterials 2014, 35, 83–91. [Google Scholar] [CrossRef]
- Wang, Q.; Tu, F.; Liu, Y.; Zhang, Y.; Li, H.; Kang, Z.; Yin, Y.; Wang, J. The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity. Mater. Sci. Eng. C 2017, 75, 237–246. [Google Scholar] [CrossRef]
- Hoenig, M.R.; Campbell, G.R.; Campbell, J.H. Vascular grafts and the endothelium. Endothelium 2006, 13, 385–401. [Google Scholar] [CrossRef]
- Avci-Adali, M.; Ziemer, G.; Wendel, H.P. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization—A review of current strategies. Biotechnol. Adv. 2010, 28, 119–129. [Google Scholar] [CrossRef]
- Mustonen, T.; Alitalo, K. Endothelial receptor tyrosine kinases involved in angiogenesis. J. Cell Biol. 1995, 129, 895–898. [Google Scholar] [CrossRef]
- Shibuya, M.; Claesson-welsh, L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 2006, 312, 549–560. [Google Scholar] [CrossRef]
- Lertkiatmongkol, P.; Liao, D.; Mei, H.; Hu, Y.; Newman, P.J. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol. 2016, 23, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Muller, W.A.; Berman, M.E.; Newman, P.J.; DeLisser, H.M.; Albelda, S.M. A Heterophilic adhesion mechanism for platelet/endothelial cell adhesion molecule 1 (CD31). J. Exp. Med. 1992, 175, 1401–1404. [Google Scholar] [CrossRef]
- Noh, K.-C.; Liu, X.; Zhuan, Z.; Yang, C.J.; Kim, Y.T.; Lee, G.W.; Choi, K.H.; Kim, K.-O. Leukocyte-poor platelet-rich plasma-derived growth factors enhance human fibroblast proliferation in vitro. Clin. Orthop. Surg. 2018, 10, 240–247. [Google Scholar] [CrossRef]
- Gössl, M.; Beighley, P.E.; Malyar, N.M.; Ritman, E.L. Role of vasa vasorum in transendothelial solute transport in the coronary vessel wall: A study with cryostatic micro-CT. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H2346–H2351. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′-3′) | Product Length (bps) | Annealing Temperature (°C) | Amplification Efficiency (%) |
---|---|---|---|---|
GAPDH | GTCACTGGTGGACCTGACCT AGGGGTCTACATGGCAACTG | 420 | 60 | 105.677 |
VEGF | GCTCAGAGCGGAGAAAGCAT GCAACGCGAGTCTGTGTTTT | 80 | 54 | 108.152 |
CD31 | GGTGGATGAGGTCCAGATTTC CAGCACAATGTCCTCTCCAG | 67 | 56 | 108.635 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, Y.; Sun, X.; Tian, W.; Xu, J.; Wang, J. Steady-State Behavior and Endothelialization of a Silk-Based Small-Caliber Scaffold In Vivo Transplantation. Polymers 2019, 11, 1303. https://doi.org/10.3390/polym11081303
Li H, Wang Y, Sun X, Tian W, Xu J, Wang J. Steady-State Behavior and Endothelialization of a Silk-Based Small-Caliber Scaffold In Vivo Transplantation. Polymers. 2019; 11(8):1303. https://doi.org/10.3390/polym11081303
Chicago/Turabian StyleLi, Helei, Yining Wang, Xiaolong Sun, Wei Tian, Jingjing Xu, and Jiannan Wang. 2019. "Steady-State Behavior and Endothelialization of a Silk-Based Small-Caliber Scaffold In Vivo Transplantation" Polymers 11, no. 8: 1303. https://doi.org/10.3390/polym11081303
APA StyleLi, H., Wang, Y., Sun, X., Tian, W., Xu, J., & Wang, J. (2019). Steady-State Behavior and Endothelialization of a Silk-Based Small-Caliber Scaffold In Vivo Transplantation. Polymers, 11(8), 1303. https://doi.org/10.3390/polym11081303